Global Improvement of Vascular Function and Redox State With Low-Dose Folic Acid

Author:

Shirodaria Cheerag1,Antoniades Charalambos1,Lee Justin1,Jackson Clare E.1,Robson Matthew D.1,Francis Jane M.1,Moat Stuart J.1,Ratnatunga Chandi1,Pillai Ravi1,Refsum Helga1,Neubauer Stefan1,Channon Keith M.1

Affiliation:

1. From the Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom (C.S., C.A., J.L., C.E.J., M.D.R., J.M.F., C.R., R.P., S.N., K.M.C.); Department of Medical Biochemistry, University Hospital of Wales, Cardiff, United Kingdom (S.J.M.); and Oxford Centre for Gene Function, Department of Physiology, Anatomy & Genetics, University of Oxford, United Kingdom and Institute of Basic Medical Sciences, University of Oslo, Norway (H.R.).

Abstract

Background— Although dietary folate fortification lowers plasma homocysteine and may reduce cardiovascular risk, high-dose folic acid therapy appears to not alter clinical outcome. Folic acid and its principal circulating metabolite, 5-methyltetrahydrofolate, improve vascular function, but mechanisms relating folate dose to vascular function remain unclear. We compared the effects of folic acid on human vessels using pharmacological high-dose versus low-dose treatment, equivalent to dietary folate fortification. Methods and Results— Fifty-six non–folate-fortified patients with coronary artery disease were randomized to receive low-dose (400 μg/d) or high-dose (5 mg/d) folic acid or placebo for 7 weeks before coronary artery bypass grafting. Vascular function was quantified by magnetic resonance imaging before and after treatment. Vascular superoxide and nitric oxide bioavailability were determined in segments of saphenous vein and internal mammary artery. Low-dose folic acid increased nitric oxide–mediated endothelium-dependent vasomotor responses, reduced vascular superoxide production, and improved enzymatic coupling of endothelial nitric oxide synthase through availability of the cofactor tetrahydrobiopterin. No further improvement in these parameters occurred with high-dose compared with low-dose treatment. Whereas plasma 5-methyltetrahydrofolate increased proportionately with treatment dose of folic acid, vascular tissue 5-methyltetrahydrofolate showed no further increment with high-dose compared with low-dose folic acid. Conclusions— Low-dose folic acid treatment, comparable to daily intake and dietary fortification, improves vascular function through effects on endothelial nitric oxide synthase and vascular oxidative stress. High-dose folic acid treatment provides no additional benefit. These direct vascular effects are related to vascular tissue levels of 5-methyltetrahydrofolate rather than plasma levels. High-dose folic acid treatment likely confers no further benefit in subjects already receiving folate supplementation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3