Single-Cell RNA Sequencing to Dissect the Immunological Network of Autoimmune Myocarditis

Author:

Hua Xiumeng1,Hu Gang2,Hu Qingtao3,Chang Yuan14,Hu Yiqing13,Gao Linlin3,Chen Xiao1,Yang Ping-Chang5,Zhang Yu36,Li Mingyao7,Song Jiangping1ORCID

Affiliation:

1. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.).

2. School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, China (G.H.).

3. National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.).

4. Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Y.C.).

5. Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Guangzhou, China (P.-C.Y.).

6. Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China (Y.Z.).

7. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.L.).

Abstract

Background: Myocarditis can develop into dilated cardiomyopathy, which may require heart transplantation. The immunological network of myocarditis phases remains unknown. This study aimed to investigate the immunological network during the transition from myocarditis to cardiomyopathy and to identify the genes contributing to the inflammatory response to myocarditis. Methods: Mice were treated with myosin heavy chain-α peptides to generate an experimental autoimmune myocarditis (EAM) model. We performed single-cell RNA sequencing analysis of Cd45 + cells extracted from mouse hearts during different EAM phases, including normal control, acute inflammatory, subacute inflammatory, and myopathy phases. Human heart tissues were collected from the surgically removed hearts of patients who had undergone heart transplantation. Results: We identified 26 cell subtypes among 34 665 cells. Macrophages constituted the main immune cell population at all disease phases (>60%), and an inflammation-associated macrophage cluster was identified in which the expression of Hif1a -regulated genes was upregulated. The neutrophil population was increased after the induction of EAM, and neutrophils then released Il-1 to participate in the EAM process. T cells were observed at the highest percentage at the subacute inflammatory phase. T-helper 17 cells, in which the expression of Hif1a -regulated genes was upregulated, constituted the main T-cell population detected at the acute inflammatory phase, whereas regulatory T cells were the main T-cell population detected at the subacute inflammatory phase, and γδ T cells releasing Il-17 were the main T-cell population observed at the myopathy phase. Moreover, the Hif1a expression level correlated with the extent of inflammation. In addition, PX-478 could alleviate the inflammatory responses of the different EAM phases. Last, HIF1A was expressed at higher levels in patients with acute autoimmune myocarditis than in patients with dilated cardiomyopathy and healthy control subjects. Conclusions: We present here a comprehensive single-cell landscape of the cardiac immune cells in different EAM phases. In addition, we elucidate the contribution of Hif1a to the inflammatory response through the regulation of immune cell activity, particularly of macrophage cluster 2 and T-helper 17 cells. Moreover, an Hif1a inhibitor alleviated inflammatory cell infiltration of the EAM model and may serve as a potential therapeutic target in the clinic.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3