Endothelial Progenitor Cells Are Recruited Into Resolving Venous Thrombi

Author:

Modarai B.1,Burnand K.G.1,Sawyer B.1,Smith A.1

Affiliation:

1. From the Academic Department of Surgery, Cardiovascular Division, King’s College, London, United Kingdom.

Abstract

Background— The purpose of this study was to determine whether endothelial cells of bone marrow origin are involved in thrombus recanalization. Methods and Results— Irradiated mice were reconstituted with bone marrow from transgenic donors expressing green fluorescent protein (GFP) linked to the Tie2 promoter. Thrombi were formed in 2 groups of 6 mice. GFP-expressing cells were located and quantified in sections of the thrombi taken after 7 and 14 days. The cell markers Mac-3, F4/80, CD68 (macrophage), and vascular endothelial growth factor receptor 2 (VEGFR2; endothelial cells) were used to determine colocalization with GFP expression in tissue sections and peritoneal macrophages. The markers CD34 and VEGFR2 were used to quantify changes in circulating endothelial cells by flow cytometry of blood from 3 cohorts of wild-type animals that had either a thrombus induced (n=18), a sham operation (n=18), or no operation (n=10). The number of GFP-expressing cells was found to increase by ≈3-fold in thrombi formed in transplanted animals between 7 and 14 days after induction ( P =0.0022). No GFP-expressing cells were found lining the new vascular channels that formed at either time interval, but many of the GFP-expressing cells also expressed Mac-3, CD68, and VEGFR2. Approximately twice as many circulating CD34 + /VEGFR2 + cells were found by day 3 in animals with thrombus compared with sham controls (CD45 , P =0.046 and CD45 + , P =0.016). Conclusions— Bone marrow–derived, Tie2-expressing cells were recruited into the thrombus during resolution but did not line the new vessels. Many of these cells expressed a macrophage phenotype and may represent a population of plastic stem cells that orchestrate thrombus recanalization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3