Dual-Contrast Molecular Imaging Allows Noninvasive Characterization of Myocardial Ischemia/Reperfusion Injury After Coronary Vessel Occlusion in Mice by Magnetic Resonance Imaging

Author:

von Elverfeldt Dominik1,Maier Alexander1,Duerschmied Daniel1,Braig Moritz1,Witsch Thilo1,Wang Xiaowei1,Mauler Maximilian1,Neudorfer Irene1,Menza Marius1,Idzko Marco1,Zirlik Andreas1,Heidt Timo1,Bronsert Peter1,Bode Christoph1,Peter Karlheinz1,von zur Muhlen Constantin1

Affiliation:

1. From the Department of Radiology–Medical Physics (D.v.E., M.B., M. Menza), Department of Pneumology (M.I.), and Institute of Pathology and Comprehensive Cancer Center (P.B.), University Medical Center Freiburg, Freiburg, Germany; Department of Cardiology I, University Heart Center Freiburg, Freiburg, Germany (A.M., D.D., T.W., M. Mauler, I.N., A.Z., T.H., C.B., C.v.z.M.); Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (X.W., K.P.); Faculty of...

Abstract

Background— Inflammation and myocardial necrosis play important roles in ischemia/reperfusion injury after coronary artery occlusion and recanalization. The detection of inflammatory activity and the extent of myocardial necrosis itself are of great clinical and prognostic interest. We developed a dual, noninvasive imaging approach using molecular magnetic resonance imaging in an in vivo mouse model of myocardial ischemia and reperfusion. Methods and Results— Ischemia/reperfusion injury was induced in 10-week-old C57BL/6N mice by temporary ligation of the left anterior descending coronary artery. Activated platelets were targeted with a contrast agent consisting of microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody directed against a ligand-induced binding site (LIBS) on activated glycoprotein IIb/IIIa (LIBS-MPIOs). After injection and imaging of LIBS-MPIOs, late gadolinium enhancement was used to depict myocardial necrosis; these imaging experiments were also performed in P2Y 12 −/− mice. All imaging results were correlated to immunohistochemistry findings. Activated platelets were detectable by magnetic resonance imaging via a significant signal effect caused by LIBS-MPIOs in the area of left anterior descending coronary artery occlusion 2 hours after reperfusion. In parallel, late gadolinium enhancement identified the extent of myocardial necrosis. Immunohistochemistry confirmed that LIBS-MPIOs bound significantly to microthrombi in reperfused myocardium. Only background binding was found in P2Y 12 −/− mice. Conclusions— Dual molecular imaging of myocardial ischemia/reperfusion injury allows characterization of platelet-driven inflammation by LIBS-MPIOs and myocardial necrosis by late gadolinium enhancement. This noninvasive imaging strategy is of clinical interest for both diagnostic and prognostic purposes and highlights the potential of molecular magnetic resonance imaging for characterizing ischemia/reperfusion injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3