Genome-Wide CRISPR Screen Identifies an NF2-Adherens Junction Mechanistic Dependency for Cardiac Lineage

Author:

Lee Chang Jie Mick12ORCID,Autio Matias I.3ORCID,Zheng Wenhao1,Song Yoohyun45,Wang Shyi Chyi45,Wong Darren Chen Pei46,Xiao Jingwei4ORCID,Zhu Yike12ORCID,Yusoff Permeen1ORCID,Yei Xi1ORCID,Chock Wan Kee3ORCID,Low Boon Chuan467ORCID,Sudol Marius8ORCID,Foo Roger S.-Y.12

Affiliation:

1. Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.).

2. Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.).

3. Genome Institute of Singapore (M.I.A., W.K.C.).

4. Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore.

5. Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore (Y.S., S.C.W.).

6. Department of Biological Sciences (D.C.P.W., B.C.L.), National University of Singapore.

7. University Scholars Programme (B.C.L.), National University of Singapore.

8. Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (M.S.).

Abstract

BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 ( MYH6 )-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2 -null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)–LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain–dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3