Resveratrol Prevents the Prohypertrophic Effects of Oxidative Stress on LKB1

Author:

Dolinsky Vernon W.1,Chan Anita Y.M.1,Robillard Frayne Isabelle1,Light Peter E.1,Des Rosiers Christine1,Dyck Jason R.B.1

Affiliation:

1. From the Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta (V.W.D., A.Y.M.C., P.E.L., J.R.B.D.), and Montreal Heart Institute and University of Montreal, Montreal, Quebec (I.R.F., C.D.R.), Canada.

Abstract

Background— Master regulators of protein synthesis such as mammalian target of rapamycin (mTOR) and p70S6 kinase contribute to left ventricular hypertrophy. These prohypertrophic pathways are modulated by a number of kinase cascades, including the hierarchical LKB1/AMP-activated protein kinase (AMPK) energy-sensing pathway. Because oxidative stress inhibits the LKB1/AMPK signaling axis to promote abnormal cell growth in cancer cells, we investigated whether oxidative stress associated with hypertension also results in the inhibition of this kinase circuit to contribute to left ventricular hypertrophy. Methods and Results— In the spontaneously hypertensive rat, a well-established genetic model of hypertension and subsequent cardiac hypertrophy, the development of left ventricular hypertrophy is associated with an increase in the electrophilic lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE). Using isolated cardiomyocytes, we show that elevated levels of HNE result in the formation of HNE-LKB1 adducts that inhibit LKB1 and subsequent AMPK activity. Consistent with inhibition of the LKB1/AMPK signaling pathway, the mTOR/p70S6 kinase system is activated, which is permissive for cardiac myocyte cell growth. Treatment of cardiomyocytes with resveratrol prevents HNE modification of the LKB1/AMPK signaling axis and blunts the prohypertrophic p70S6 kinase response. Furthermore, administration of resveratrol to spontaneously hypertensive rats results in increased AMPK phosphorylation and activity and reduced left ventricular hypertrophy. Conclusions— Our data identify a molecular mechanism in the cardiomyocyte involving the oxidative stress–derived lipid peroxidation byproduct HNE and the LKB1/AMPK signaling pathway that contributes to the development of left ventricular hypertrophy. We also suggest that resveratrol may be a potential therapy for patients at risk for developing pathological cardiac hypertrophy by preventing this prohypertrophic process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3