PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36

Author:

Qi Zhiyong1,Hu Liang2ORCID,Zhang Jianjun3,Yang Wenlong1,Liu Xin1,Jia Daile1,Yao Zhifeng1,Chang Lin3,Pan Guanxing3,Zhong Haoxuan4,Luo Xinping4,Yao Kang1,Sun Aijun1,Qian Juying1,Ding Zhongren23,Ge Junbo1

Affiliation:

1. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.).

2. Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, China (L.H., Z.D.).

3. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (J.Z., L.C., G.P., Z.D.).

4. Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China (H.Z., X. Luo).

Abstract

Background: PCSK9 (proprotein convertase subtilisin/kexin 9), mainly secreted by the liver and released into the blood, elevates plasma low-density lipoprotein cholesterol by degrading low-density lipoprotein receptor. Pleiotropic effects of PCSK9 beyond lipid metabolism have been shown. However, the direct effects of PCSK9 on platelet activation and thrombosis, and the underlying mechanisms, as well, still remain unclear. Methods: We detected the direct effects of PCSK9 on agonist-induced platelet aggregation, dense granule ATP release, integrin αIIbβ3 activation, α-granule release, spreading, and clot retraction. These studies were complemented by in vivo analysis of FeCl 3 -injured mouse mesenteric arteriole thrombosis. We also investigated the underlying mechanisms. Using the myocardial infarction (MI) model, we explored the effects of PCSK9 on microvascular obstruction and infarct expansion post-MI. Results: PCSK9 directly enhances agonist-induced platelet aggregation, dense granule ATP release, integrin αIIbβ3 activation, P-selectin release from α-granules, spreading, and clot retraction. In line, PCSK9 enhances in vivo thrombosis in a FeCl 3 -injured mesenteric arteriole thrombosis mouse model, whereas PCSK9 inhibitor evolocumab ameliorates its enhancing effects. Mechanism studies revealed that PCSK9 binds to platelet CD36 and thus activates Src kinase and MAPK (mitogen-activated protein kinase)–extracellular signal-regulated kinase 5 and c-Jun N-terminal kinase, increases the generation of reactive oxygen species, and activates the p38MAPK/cytosolic phospholipase A2/cyclooxygenase-1/thromboxane A 2 signaling pathways downstream of CD36 to enhance platelet activation, as well. Using CD36 knockout mice, we showed that the enhancing effects of PCSK9 on platelet activation are CD36 dependent. It is important to note that aspirin consistently abolishes the enhancing effects of PCSK9 on platelet activation and in vivo thrombosis. Last, we showed that PCSK9 activating platelet CD36 aggravates microvascular obstruction and promotes MI expansion post-MI. Conclusions: PCSK9 in plasma directly enhances platelet activation and in vivo thrombosis, and MI expansion post-MI, as well, by binding to platelet CD36 and thus activating the downstream signaling pathways. PCSK9 inhibitors or aspirin abolish the enhancing effects of PCSK9, supporting the use of aspirin in patients with high plasma PCSK9 levels in addition to PCSK9 inhibitors to prevent thrombotic complications.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3