Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis

Author:

Nahrendorf Matthias1,Zhang Hanwen1,Hembrador Sheena1,Panizzi Peter1,Sosnovik David E.1,Aikawa Elena1,Libby Peter1,Swirski Filip K.1,Weissleder Ralph1

Affiliation:

1. From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (M.N., R.W.); Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Charlestown (M.N., H.Z., S.H., P.P., D.E.S., E.A., F.K.S., R.W.); Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Boston, Mass (M.N., E.A., P.L., R.W.); Department of Cardiology, Massachusetts General Hospital, Boston (D.E.S.); and...

Abstract

Background— Macrophages participate centrally in atherosclerosis, and macrophage markers (eg, CD68, MAC-3) correlate well with lesion severity and therapeutic modulation. On the basis of the avidity of lesional macrophages for polysaccharide-containing supramolecular structures such as nanoparticles, we have developed a new positron emission tomography (PET) agent with optimized pharmacokinetics to allow in vivo imaging at tracer concentrations. Methods and Results— A dextranated and DTPA-modified magnetofluorescent 20-nm nanoparticle was labeled with the PET tracer 64 Cu (1 mCi/0.1 mg nanoparticles) to yield a PET, magnetic resonance, and optically detectable imaging agent. Peak PET activity 24 hours after intravenous injection into mice deficient in apolipoprotein E with experimental atherosclerosis mapped to areas of high plaque load identified by computed tomography such as the aortic root and arch and correlated with magnetic resonance and optical imaging. Accumulated dose in apolipoprotein E–deficient aortas determined by gamma counting was 260% and in carotids 392% of respective wild-type organs ( P <0.05 both). Autoradiography of aortas demonstrated uptake of the agent into macrophage-rich atheromata identified by Oil Red O staining of lipid deposits. The novel nanoagent accumulated predominantly in macrophages as determined by fluorescence microscopy and flow cytometry of cells dissociated from aortas. Conclusions— This report establishes the capability of a novel trimodality nanoparticle to directly detect macrophages in atherosclerotic plaques. Advantages include improved sensitivity; direct correlation of PET signal with an established biomarker (CD68); ability to readily quantify the PET signal, perform whole-body vascular surveys, and spatially localize and follow the trireporter by microscopy; and clinical translatability of the agent given similarities to magnetic resonance imaging probes in clinical trials.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 498 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3