Protein Precoating of Elastomeric Tissue-Engineering Scaffolds Increased Cellularity, Enhanced Extracellular Matrix Protein Production, and Differentially Regulated the Phenotypes of Circulating Endothelial Progenitor Cells

Author:

Sales Virna L.1,Engelmayr George C.1,Johnson John A.1,Gao Jin1,Wang Yadong1,Sacks Michael S.1,Mayer John E.1

Affiliation:

1. From the Department of Cardiac Surgery (V.L.S., J.A.J., J.E.M.), Children’s Hospital Boston, Harvard Medical School, Boston, Mass; Children’s Hospital Boston, Department of Bioengineering (G.C.E., M.S.S.), Engineered Tissue Mechanics Lab, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pa; Coulter Department of Biomedical Engineering (J.G., Y.W.), Georgia Institute of Technology, Emory University, Atlanta, Ga; Harvard-MIT Division of Health Sciences and Technology (G.C.E.),...

Abstract

Background— Optimal cell sources and scaffold-cell interactions remain unanswered questions for tissue engineering of heart valves. We assessed the effect of different protein precoatings on a single scaffold type (elastomeric poly (glycerol sebacate)) with a single cell source (endothelial progenitor cells). Methods and Results— Elastomeric poly (glycerol sebacate) scaffolds were precoated with laminin, fibronectin, fibrin, collagen types I/III, or elastin. Characterized ovine peripheral blood endothelial progenitor cells were seeded onto scaffolds for 3 days followed by 14 days incubation. Endothelial progenitor cells were CD31 + , vWF + , and α-SMA before seeding confirmed by immunohistochemistry and immunoblotting. Both precoated and uncoated scaffolds demonstrated surface expression of CD31 + and vWF + , α-SMA + cells and were found in the “interstitium” of the scaffold. Protein precoating of elastomeric poly (glycerol sebacate) scaffolds revealed significantly increased cellularity and altered the phenotypes of endothelial progenitor cells, which resulted in changes in cellular behavior and extracellular matrix production. Moreover, mechanical flexure testing demonstrated decreased effective stiffness of the seeded scaffolds compared with unseeded controls. Conclusions— Scaffold precoating with extracellular matrix proteins can allow more precise “engineering” of cellular behavior in the development of tissue engineering of heart valves constructs by altering extracellular matrix production and cell phenotype.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3