Secretory Products From Epicardial Adipose Tissue of Patients With Type 2 Diabetes Mellitus Induce Cardiomyocyte Dysfunction

Author:

Greulich Sabrina1,Maxhera Bujar1,Vandenplas Guy1,de Wiza Daniella Herzfeld1,Smiris Konstantinos1,Mueller Heidi1,Heinrichs Jessica1,Blumensatt Marcel1,Cuvelier Claude1,Akhyari Payam1,Ruige Johannes B.1,Ouwens D. Margriet1,Eckel Juergen1

Affiliation:

1. From the Institute of Clinical Biochemistry and Pathobiochemistry (S.G., D.H.d.W., H.M., J.H., M.B., D.M.O.) and Paul Langerhans Group – Integrative Physiology (J.E.), German Diabetes Center, Duesseldorf, Germany; the Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany (B.M., K.S., P.A.); and the Heart Centre (G.V.), the Department of Pathology (C.C.), and the Department of Endocrinology (J.B.R., D.M.O.), Ghent University Hospital, Ghent...

Abstract

Background— Secreted factors from epicardial adipose tissue (EAT) have been implicated in the development of cardiomyocyte dysfunction. This study aimed to assess whether alterations in the secretory profile of EAT in patients with type 2 diabetes mellitus (DM2) affect contractile function and insulin action in cardiomyocytes. Methods and Results— Contractile function and insulin action were analyzed in primary adult rat cardiomyocytes incubated with conditioned media (CM) generated from explants of EAT biopsies obtained from patients without and with DM2. CM from subcutaneous and pericardial adipose tissue biopsies from the same patients served as the control. Cardiomyocytes treated with CM (EAT) from DM2 patients showed reductions in sarcomere shortening, cytosolic Ca 2+ fluxes, expression of sarcoplasmic endoplasmic reticulum ATPase 2a, and decreased insulin-mediated Akt-Ser473-phosphorylation as compared with CM from the other groups. Profiling of the CM showed that activin A, angiopoietin-2, and CD14 selectively accumulated in CM-EAT-DM2 versus CM-EAT in patients without DM2 and CM from the other fat depots. Accordingly, EAT biopsies from DM2 patients were characterized by clusters of CD14-positive monocytes. Furthermore, SMAD2-phosphorylation, a downstream target of activin A signaling, was elevated in cardiomyocytes treated with CM (EAT) from DM2 patients, and the detrimental effects of CM (EAT) from DM2 patients were partially abolished in cardiomyocytes pretreated with a neutralizing antibody against activin A. Finally, both recombinant activin A and angiopoietin-2 reduced cardiomyocyte contractile function, but only activin A reduced the expression of sarcoplasmic endoplasmic reticulum ATPase 2a. Conclusions— Collectively, our data implicate DM2-related alterations in the secretory profile of EAT in the pathogenesis of diabetes mellitus–related heart disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3