Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis

Author:

Shah Zubair1,Kampfrath Thomas1,Deiuliis Jeffrey A.1,Zhong Jixin1,Pineda Colleen1,Ying Zhekang1,Xu Xiaohua1,Lu Bo1,Moffatt-Bruce Susan1,Durairaj Rekha1,Sun Qinghua1,Mihai Georgeta1,Maiseyeu Andrei1,Rajagopalan Sanjay1

Affiliation:

1. From the Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus.

Abstract

Background— Dipeptidyl-peptidase 4 (DPP-4) inhibitors are increasingly used to accomplish glycemic targets in patients with type II diabetes mellitus. Because DPP-4 is expressed in inflammatory cells, we hypothesized that its inhibition will exert favorable effects in atherosclerosis. Methods and Results— Male LDLR −/− mice (6 weeks) were fed a high-fat diet or normal chow diet for 4 weeks and then randomized to vehicle or alogliptin, a high-affinity DPP-4 inhibitor (40 mg · kg −1 · d −1 ), for 12 weeks. Metabolic parameters, blood pressure, vascular function, atherosclerosis burden, and indexes of inflammation were obtained in target tissues, including the vasculature, adipose, and bone marrow, with assessment of global and cell-specific inflammatory pathways. In vitro and in vivo assays of DPP-4 inhibition (DPP-4i) on monocyte activation/migration were conducted in both human and murine cells and in a short-term ApoE −/− mouse model. DPP-4i improved markers of insulin resistance and reduced blood pressure. DPP-4i reduced visceral adipose tissue macrophage content (adipose tissue macrophages; CD11b + , CD11c + , Ly6C hi ) concomitant with upregulation of CD163. DPP-4 was highly expressed in bone marrow–derived CD11b + cells, with DPP-4i downregulating proinflammatory genes in these cells. DPP-4i decreased aortic plaque with a striking reduction in plaque macrophages. DPP-4i prevented monocyte migration and actin polymerization in in vitro assays via Rac-dependent mechanisms and prevented in vivo migration of labeled monocytes to the aorta in response to exogenous tumor necrosis factor-α and DPP-4. Conclusion— DPP-4i exerts antiatherosclerotic effects and reduces inflammation via inhibition of monocyte activation/chemotaxis. These findings have important implications for the use of this class of drugs in atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3