Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction

Author:

Hadas Yoav123,Vincek Adam S.2,Youssef Elias123,Żak Magdalena M.123,Chepurko Elena123,Sultana Nishat123,Sharkar Mohammad Tofael Kabir13,Guo Ningning2,Komargodski Rinat123,Kurian Ann Anu123,Kaur Keerat123,Magadum Ajit123,Fargnoli Anthony1,Katz Michael G.1,Hossain Nadia123,Kenigsberg Ephraim2,Dubois Nicole C.43,Schadt Eric25,Hajjar Roger6,Eliyahu Efrat25,Zangi Lior123ORCID

Affiliation:

1. Cardiovascular Research Center (Y.H., E.Y., M.M.Ż., E.C., N.S., M.T.K.S., R.K., A.A.K., K.K., A.M., N.H., L.Z., A.F, M.G.K.), Icahn School of Medicine at Mount Sinai, New York.

2. Department of Genetics and Genomic Sciences (Y.H., E.Y., M.M.Ż., E.C., N.S., M.T.K.S., R.K., A.A.K., K.K., A.M., N.H., L.Z., A.S.V., N.G., E.K., E.S., E.E.), Icahn School of Medicine at Mount Sinai, New York.

3. Black Family Stem Cell Institute (Y.H., E.Y., M.M.Ż., E.C., N.S., M.T.K.S., R.K., A.A.K., K.K., A.M., N.H., L.Z., N.C.D.), Icahn School of Medicine at Mount Sinai, New York.

4. Department of Developmental and Regenerative Biology and The Mindich Child Health and Development Institute (N.C.D.), Icahn School of Medicine at Mount Sinai, New York.

5. Multiscale Biology Institute (E.S., E.E.), Icahn School of Medicine at Mount Sinai, New York.

6. Phospholamban Foundation, Amsterdam, The Netherlands (R.J.H.).

Abstract

Background: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. Methods: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. Results: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. Conclusions: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3