Development and Validation of a Sudden Cardiac Death Prediction Model for the General Population

Author:

Deo Rajat1,Norby Faye L.1,Katz Ronit1,Sotoodehnia Nona1,Adabag Selcuk1,DeFilippi Christopher R.1,Kestenbaum Bryan1,Chen Lin Y.1,Heckbert Susan R.1,Folsom Aaron R.1,Kronmal Richard A.1,Konety Suma1,Patton Kristen K.1,Siscovick David1,Shlipak Michael G.1,Alonso Alvaro1

Affiliation:

1. From Section of Electrophysiology, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (R.D.); Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis (F.L.N., A.R.F.); Kidney Research Institute (R.K., B.K., R.A.K.), Division of Cardiology (N.S., K.K.P.), University of Washington, Seattle; Division of Cardiology, Veterans Affairs Medical Center, Minneapolis, MN (S.A.); Division of...

Abstract

Background: Most sudden cardiac death (SCD) events occur in the general population among persons who do not have any prior history of clinical heart disease. We sought to develop a predictive model of SCD among US adults. Methods: We evaluated a series of demographic, clinical, laboratory, electrocardiographic, and echocardiographic measures in participants in the ARIC study (Atherosclerosis Risk in Communities) (n=13 677) and the CHS (Cardiovascular Health Study) (n=4207) who were free of baseline cardiovascular disease. Our initial objective was to derive a SCD prediction model using the ARIC cohort and validate it in CHS. Independent risk factors for SCD were first identified in the ARIC cohort to derive a 10-year risk model of SCD. We compared the prediction of SCD with non-SCD and all-cause mortality in both the derivation and validation cohorts. Furthermore, we evaluated whether the SCD prediction equation was better at predicting SCD than the 2013 American College of Cardiology/American Heart Association Cardiovascular Disease Pooled Cohort risk equation. Results: There were a total of 345 adjudicated SCD events in our analyses, and the 12 independent risk factors in the ARIC study included age, male sex, black race, current smoking, systolic blood pressure, use of antihypertensive medication, diabetes mellitus, serum potassium, serum albumin, high-density lipoprotein, estimated glomerular filtration rate, and QT c interval. During a 10-year follow-up period, a model combining these risk factors showed good to excellent discrimination for SCD risk (c-statistic 0.820 in ARIC and 0.745 in CHS). The SCD prediction model was slightly better in predicting SCD than the 2013 American College of Cardiology/American Heart Association Pooled Cohort risk equations (c-statistic 0.808 in ARIC and 0.743 in CHS). Only the SCD prediction model, however, demonstrated similar and accurate prediction for SCD using both the original, uncalibrated score and the recalibrated equation. Finally, in the echocardiographic subcohort, a left ventricular ejection fraction <50% was present in only 1.1% of participants and did not enhance SCD prediction. Conclusions: Our study is the first to derive and validate a generalizable risk score that provides well-calibrated, absolute risk estimates across different risk strata in an adult population of white and black participants without a clinical diagnosis of cardiovascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3