Oxidation of Protein Kinase A Regulatory Subunit PKARIα Protects Against Myocardial Ischemia-Reperfusion Injury by Inhibiting Lysosomal-Triggered Calcium Release

Author:

Simon Jillian N.1ORCID,Vrellaku Besarte1,Monterisi Stefania2,Chu Sandy M.1,Rawlings Nadiia1,Lomas Oliver1,Marchal Gerard A.1,Waithe Dominic3ORCID,Syeda Fahima4,Gajendragadkar Parag R.1ORCID,Jayaram Raja1,Sayeed Rana5,Channon Keith M.1,Fabritz Larissa46,Swietach Pawel2ORCID,Zaccolo Manuela2,Eaton Philip7,Casadei Barbara1ORCID

Affiliation:

1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom.

2. Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), University of Oxford, United Kingdom.

3. Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine (D.W.), University of Oxford, United Kingdom.

4. Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (F.S., L.F.).

5. Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals National Health Service Foundation Trust, United Kingdom (R.S.).

6. Department of Cardiology, University Hospitals Birmingham, United Kingdom (L.F.).

7. William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, United Kingdom (P.E.).

Abstract

Background: Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKARIα (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. Methods: Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the effect of disulfide formation on PKARIα catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from “redox dead” (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo. Results: In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, P =0.023; 2.4-fold in mice, P <0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in “redox dead” knock-in mouse hearts resulted in larger infarcts (2-fold, P <0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, P <0.001), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion. Conclusions: Disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel–mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3