Dialysis Accelerates Medial Vascular Calcification in Part by Triggering Smooth Muscle Cell Apoptosis

Author:

Shroff Rukshana C.1,McNair Rosamund1,Figg Nichola1,Skepper Jeremy N.1,Schurgers Leon1,Gupta Ashmeet1,Hiorns Melanie1,Donald Ann E.1,Deanfield John1,Rees Lesley1,Shanahan Catherine M.1

Affiliation:

1. From the Nephrology (R.C.S., A.G., L.R.), Radiology (M.H.), and Vascular Physiology (A.E.D., J.D.) Units, Great Ormond Street Hospital and University College London Institute of Child Health; BHF Centre, Cardiovascular Division, King’s College London (R.C.S., C.M.S.), London; Department of Medicine, Addenbrooke’s Hospital (R.M., N.F.); Multi-Imaging Centre, Department of Anatomy (J.N.S.), Cambridge, United Kingdom; and CARIM and VitaK (L.S.), University of Maastricht, Maastricht, The Netherlands.

Abstract

Background— Vascular calcification is associated with increased morbidity and mortality in stage V chronic kidney disease, yet its early pathogenesis and initiating mechanisms in vivo remain poorly understood. To address this, we quantified the calcium (Ca) load in arteries from children (10 predialysis, 24 dialysis) and correlated it with clinical, biochemical, and vascular measures. Methods and Results— Vessel Ca load was significantly elevated in both predialysis and dialysis and was correlated with the patients’ mean serum Ca×phosphate product. However, only dialysis patients showed increased carotid intima-media thickness and increased aortic stiffness, and calcification on computed tomography was present in only the 2 patients with the highest Ca loads. Importantly, predialysis vessels appeared histologically intact, whereas dialysis vessels exhibited evidence of extensive vascular smooth muscle cell (VSMC) loss owing to apoptosis. Dialysis vessels also showed increased alkaline phosphatase activity and Runx2 and osterix expression, indicative of VSMC osteogenic transformation. Deposition of the vesicle membrane marker annexin VI and vesicle component mineralization inhibitors fetuin-A and matrix Gla-protein increased in dialysis vessels and preceded von Kossa positive overt calcification. Electron microscopy showed hydroxyapatite nanocrystals within vesicles released from damaged/dead VSMCs, indicative of their role in initiating calcification. Conclusions— Taken together, this study shows that Ca accumulation begins predialysis, but it is the induction of VSMC apoptosis in dialysis that is the key event in disabling VSMC defense mechanisms and leading to overt calcification, eventually with clinically detectable vascular damage. Thus the identification of factors that lead to VSMC death in dialysis will be of prime importance in preventing vascular calcification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 433 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3