ALDH1A3 Coordinates Metabolism With Gene Regulation in Pulmonary Arterial Hypertension

Author:

Li Dan123,Shao Ning-Yi245,Moonen Jan-Renier123,Zhao Zhixin6,Shi Minyi6,Otsuki Shoichiro123ORCID,Wang Lingli123,Nguyen Tiffany23,Yan Elaine123,Marciano David P.6,Contrepois Kévin6ORCID,Li Caiyun G.7,Wu Joseph C.24ORCID,Snyder Michael P.26,Rabinovitch Marlene123ORCID

Affiliation:

1. Vera Moulton Wall Center for Pulmonary Vascular Diseases (D.L., J-R.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.

2. Cardiovascular Institute (D.L., N-Y.S., J-R.M., S.O., L.W., T.N., E.Y., J.C.W., M.P.S., M.R.), Stanford University School of Medicine, CA.

3. Department of Pediatrics (D.L., J-R-.M., S.O., L.W., T.N., E.Y., M.R.), Stanford University School of Medicine, CA.

4. Department of Medicine (N-Y.S., J.C.W.), Stanford University School of Medicine, CA.

5. Health Sciences, University of Macau, Macau Special Administrative Region, People’s Republic of China (N-Y.S.).

6. Department of Genetics (Z.Z., M.S., D.P.M., K.C., M.P.S.), Stanford University School of Medicine, CA.

7. Department of Radiation Oncology (C.G.L.), Stanford University School of Medicine, CA.

Abstract

Background: Metabolic alterations provide substrates that influence chromatin structure to regulate gene expression that determines cell function in health and disease. Heightened proliferation of smooth muscle cells (SMC) leading to the formation of a neointima is a feature of pulmonary arterial hypertension (PAH) and systemic vascular disease. Increased glycolysis is linked to the proliferative phenotype of these SMC. Methods: RNA sequencing was applied to pulmonary arterial SMC (PASMC) from PAH patients with and without a BMPR2 (bone morphogenetic receptor 2) mutation versus control PASMC to uncover genes required for their heightened proliferation and glycolytic metabolism. Assessment of differentially expressed genes established metabolism as a major pathway, and the most highly upregulated metabolic gene in PAH PASMC was aldehyde dehydrogenase family 1 member 3 ( ALDH1A3) , an enzyme previously linked to glycolysis and proliferation in cancer cells and systemic vascular SMC. We determined if these functions are ALDH1A3-dependent in PAH PASMC, and if ALDH1A3 is required for the development of pulmonary hypertension in a transgenic mouse. Nuclear localization of ALDH1A3 in PAH PASMC led us to determine whether and how this enzyme coordinately regulates gene expression and metabolism in PAH PASMC. Results: ALDH1A3 mRNA and protein were increased in PAH versus control PASMC, and ALDH1A3 was required for their highly proliferative and glycolytic properties. Mice with Aldh1a3 deleted in SMC did not develop hypoxia-induced pulmonary arterial muscularization or pulmonary hypertension. Nuclear ALDH1A3 converted acetaldehyde to acetate to produce acetyl coenzyme A to acetylate H3K27, marking active enhancers. This allowed for chromatin modification at NFYA (nuclear transcription factor Y subunit α) binding sites via the acetyltransferase KAT2B (lysine acetyltransferase 2B) and permitted NFY-mediated transcription of cell cycle and metabolic genes that is required for ALDH1A3-dependent proliferation and glycolysis. Loss of BMPR2 in PAH SMC with or without a mutation upregulated ALDH1A3, and transcription of NFYA and ALDH1A3 in PAH PASMC was β-catenin dependent. Conclusions: Our studies have uncovered a metabolic-transcriptional axis explaining how dividing cells use ALDH1A3 to coordinate their energy needs with the epigenetic and transcriptional regulation of genes required for SMC proliferation. They suggest that selectively disrupting the pivotal role of ALDH1A3 in PAH SMC, but not endothelial cells, is an important therapeutic consideration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3