Lower Circulating Folate Induced by a Fidgetin Intronic Variant Is Associated With Reduced Congenital Heart Disease Susceptibility

Author:

Wang Dan1,Wang Feng1,Shi Kai-Hu1,Tao Hui1,Li Yang1,Zhao Rui1,Lu Han1,Duan Wenyuan1,Qiao Bin1,Zhao Shi-Min1,Wang Hongyan1,Zhao Jian-Yuan1

Affiliation:

1. From Obstetrics and Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China (D.W., Y.L., R.Z., H.L., S.-M.Z., H.W., J.-Y.Z.); Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development and Children’s Hospital of Fudan University, Fudan University, Shanghai, China (D.W., F.W., Y.L., R.Z., S.-M.Z., H.W., J.-Y.Z.); MOE Key Laboratory of...

Abstract

Background: Folate deficiency is an independent risk factor for congenital heart disease (CHD); however, the maternal plasma folate level is paradoxically not a good diagnostic marker. Genome-wide surveys have identified variants of nonfolate metabolic genes associated with the plasma folate level, suggesting that these genetic polymorphisms are potential risk factors for CHD. Methods: To examine the effects of folate concentration-related variations on CHD risk in the Han Chinese population, we performed 3 independent case-control studies including a total of 1489 patients with CHD and 1745 control subjects. The expression of the Fidgetin (FIGN) was detected in human cardiovascular and decidua tissue specimens with quantitative real-time polymerase chain reaction and Western blotting. The molecular mechanisms were investigated by luciferase reporter assays, surface plasmon resonance, and chromatin immunoprecipitation. FIGN-interacting proteins were confirmed by tandem affinity purification and coimmunoprecipitation. Proteasome activity and metabolite concentrations in the folate pathway were quantified with a commercial proteasome activity assay and immunoassays, respectively. Results: The +94762G>C (rs2119289) variant in intron 4 of the FIGN gene was associated with significant reduction in CHD susceptibility ( P =5.1×10 −14 for the allele, P =8.5×10 –−13 for the genotype). Analysis of combined samples indicated that CHD risks in individuals carrying heterozygous (GC) or homozygous (CC) genotypes were reduced by 44% (odds ratio [OR]=0.56; 95% confidence interval [CI]=0.47–0.67) and 66% (OR=0.34; 95% CI=0.23–0.50), respectively, compared with those with the major GG genotype. Minor C allele carriers who had decreased plasma folate levels exhibited significantly increased FIGN expression because the transcription suppressor CREB1 did not bind the alternative promoter of FIGN isoform X3. Mechanistically, increased FIGN expression led to the accumulation of both reduced folate carrier 1 and dihydrofolate reductase via inhibition of their proteasomal degradation, which promoted folate absorption and metabolism. Conclusions: We report a previously undocumented finding that decreased circulating folate levels induced by increased folate transmembrane transport and utilization, as determined by the FIGN intronic variant, serves as a protective mechanism against CHD. Our results may explain why circulating folate levels do not have a good diagnostic value.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3