Percutaneous Mitral Annuloplasty

Author:

Maselli Daniele1,Guarracino Fabio1,Chiaramonti Francesca1,Mangia Federica1,Borelli Gabriele1,Minzioni Gaetano1

Affiliation:

1. From the Cardio-Thoracic Department, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy.

Abstract

Background— To allow performance of “stand-alone” mitral annuloplasty with minimal invasiveness, percutaneous techniques consisting of delivery into the coronary sinus (CS) of devices intended to shrink the mitral valve annulus have recently been tested in animal models. These techniques exploit the anatomic proximity of the CS and mitral valve annulus in ovine or dogs. Knowledge of a detailed anatomic relationship between the CS, coronary arteries, and mitral valve annulus in humans is essential to define the safety and efficacy of percutaneous techniques in clinical practice. We sought to determine the qualitative and quantitative anatomic relationships between CS and surrounding structures in human hearts. Methods and Results— The distance from the CS to the mitral valve annulus and the relationship between the CS and surrounding structures were studied in 61 excised cadaveric human hearts. Maximal distance from the CS to the mitral valve annulus was found to be up to 19 mm (mean, 9.7±3.2 mm). A diagonal or ramus branch, main circumflex artery, or its branches were located between anterior interventricular vein/CS and the mitral valve annulus in 16.4% and 63.9% of cases, respectively. Conclusions— Surgical anatomy suggests that in humans the CS is located behind the left atrial wall at a significant distance from the mitral valve annulus. Percutaneous mitral annuloplasty devices probably shrink the mitral valve annulus only by an indirect traction mediated by the left atrial wall; a theoretical risk of compressing coronary artery branches exists. Chronic studies are needed to address this problem and to determine long-term efficacy of such methods.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3