Functional Recovery of Damaged Skeletal Muscle Through Synchronized Vasculogenesis, Myogenesis, and Neurogenesis by Muscle-Derived Stem Cells

Author:

Tamaki Tetsuro1,Uchiyama Yoshiyasu1,Okada Yoshinori1,Ishikawa Tetsuya1,Sato Masahiro1,Akatsuka Akira1,Asahara Takayuki1

Affiliation:

1. From the Department of Regenerative Medicine, Division of Basic Clinical Science (T.T., T.I., T.A.), the Department of Orthopedics (Y.U.), and the Teaching and Research Support Center (Y.O., A.A.), Tokai University School of Medicine, and the Institute of Medical Sciences, Tokai University (M.S.), Kanagawa; and the Institute of Biomedical Research and Innovation, Division of Stem Cell Translational Research (T.A.), and the RIKEN Center of Developmental Biology, Stem Cell Translational Research Team,...

Abstract

Background— Recent studies have shown that skeletal muscle–derived stem cells (MDSCs) can give rise to several cell lineages after transplantation. However, the potential therapeutic uses of MDSCs, the functional significance of the transplanted tissue, and vasculogenesis, myogenesis, and reconstitution of other tissues have yet to be investigated in detail. In addition, the relationship between MDSCs and mesenchymal bone marrow cells is of interest. Methods and Results— We developed a severe-damage model of mouse tibialis anterior muscle with a large deficit of nerve fibers, muscle fibers, and blood vessels. We investigated the potential therapeutic use of freshly isolated CD34 + /45 (Sk-34) cells. Results showed that, after transplantation, implanted cells give rise to myogenic, vascular (pericytes, vascular smooth muscle cells, and endothelial cells), and neural (Schwann) cells, as well as contributing to the synchronized reconstitution of blood vessels, muscle fibers, and peripheral nerves, with significant recovery of both mass and contractile function after transplantation. Investigation of Sk-34 cell transplantation to the renal capsule (nonmuscle tissue) and fluorescence in situ hybridization analysis for the transplanted muscle detecting the Y chromosome revealed the intrinsic plasticity of the Sk-34 cell population. In addition, there were no donor-derived Sk-34 cells in the muscle of lethally irradiated bone marrow–transplanted animals, indicating that the Sk-34 cells were not derived from bone marrow. Conclusions— These findings indicate that freshly isolated skeletal muscle–derived Sk-34 cells are potentially useful for reconstitution therapy of the vascular, muscular, and peripheral nervous systems. These results provide new insights into somatic stem and/or progenitor cells with regard to vasculogenesis, myogenesis, and neurogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3