Remodeling of myocyte dimensions in hypertrophic and atrophic rat hearts.

Author:

Campbell S E1,Korecky B1,Rakusan K1

Affiliation:

1. Department of Physiology, University of Ottawa Health Sciences Center, Ontario, Canada.

Abstract

Changes in hemodynamic load cause alterations in cardiac myocyte size, with regional variations in myocyte size distribution possible within the ventricular wall. We studied regional changes in cellular dimensions and their distribution in two models of cardiac hypertrophy and in cardiac atrophy in the rat. Combined volume-pressure overload was produced by 3,3',5-triiodo-L-thyronine (T3) treatment; atrophy was produced by heterotopic isotransplantation. Our previous data from long-term pressure overload after aortic constriction were used for comparison. Isolated ventricular myocytes were obtained after in vitro coronary perfusion with collagenase. Cell volume and its distribution were determined; cell length was directly measured by image analysis, and cross-sectional area was estimated from the cell volume/cell length ratio, assuming a cylindrical model. Myocyte hypertrophy resulting from hyperthyroidism and aortic constriction was primarily due to increased cross-sectional area. In both cases, the relative response was greater in the right ventricle than in the left ventricle. Within the left ventricle, epimyocardial myocytes enlarged the most. Aortic constriction and T3 treatment predominantly increased the size of smaller myocytes. Heterogeneity in myocyte size increased after constriction but remained relatively unaffected after T3 treatment. Atrophy of left ventricular myocytes was due to a proportional decrease in cell length and cross-sectional area, with the greatest decrease in the left ventricular endomyocardium. Atrophy predominantly affected larger myocytes, resulting in a more homogeneous overall population of smaller myocytes. We conclude that various alterations in load lead to diverse remodeling in the myocyte population throughout the ventricular wall. In general, smaller myocytes show the highest growth potential, whereas larger myocytes exhibit the highest potential to atrophy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3