Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia.

Author:

Furukawa T1,Kimura S1,Furukawa N1,Bassett A L1,Myerburg R J1

Affiliation:

1. Department of Medicine, University of Miami School of Medicine, FL 33101.

Abstract

Epicardial cells are more susceptible to the electrophysiological effects of ischemia than are endocardial cells. To explore the ionic basis for the differential electrophysiological responses to ischemia at the two sites, we used patch-clamp techniques to study the effects of ATP depletion on action potential duration and the ability of ATP-regulated K+ channels in single cells isolated from feline left ventricular endocardial and epicardial surfaces. During ATP depletion by treatment with 1 mM cyanide (CN-), shortening of action potential durations was significantly greater in epicardial cells than in endocardial cells. Thirty minutes after initiating exposure to 1 mM CN-, action potential duration at 90% repolarization was reduced to 0.70 +/- 0.12 of the control value for endocardial cells versus 0.39 +/- 0.18 for epicardial cells (p less than 0.01), and action potential duration at 20% repolarization was reduced to 0.72 +/- 0.13 for endocardial cells versus 0.12 +/- 0.09 for epicardial cells (p less than 0.01). In both endocardial and epicardial cells, the shortening of action potential by CN- treatment was partially reversed by 0.3 microM glibenclamide; the magnitude of reversal, however, was much greater in epicardial cells. After exposure to 1 mM CN-, the activity of ATP-regulated K+ channels in cell-attached membrane patches was significantly greater in epicardial cells than in endocardial cells. To study the dose-response relation between ATP concentration and open-state probability of the channels, intracellular surfaces of inside-out membrane patches containing ATP-regulated K+ channels were exposed to various concentrations of ATP (10-1,000 microM). The concentration of ATP that produced half-maximal inhibition of the channel was 23.6 +/- 21.9 microM in endocardial cells and 97.6 +/- 48.1 microM in epicardial cells (p less than 0.01). These data indicate that ATP-regulated K+ channels are activated by a smaller reduction in intracellular ATP in epicardial cells than in endocardial cells. The differential ATP sensitivity of ATP-regulated K+ channels in endocardial and epicardial cells may be responsible for the differential shortening in action potentials during ischemia at the two sites.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference35 articles.

1. Effect of Ischemia and Antianginal Drugs on the Distribution of Radioactive Microspheres in the Canine Left Ventricle

2. Transmural gradients of left ventricular tissue metabolites after circumflex artery ligation in dogs

3. Transmural myocardial perfusion during restricted coronary inflow in the awake dog;Bache RJ;Am J Physiol,1977

4. Transmural pH gradient in canine myocardial ischemia;Watson RM;Am J Phvsiol,1984

5. Slow Ventricular Activation in Acute Myocardial Infarction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3