Granulocytes cause reperfusion ventricular dysfunction after 15-minute ischemia in the dog.

Author:

Engler R,Covell J W

Abstract

Regional ventricular dysfunction (the stunned myocardium) persists for several hours after 15 minutes of ischemia and reperfusion in the dog. Superoxide-radical-induced damage appears to be one of the mechanisms of this injury. We tested whether granulocytes were a direct source of injury in the stunned myocardium in the 15-minute ischemia dog model. Regional function during agranulocytic extracorporeal coronary perfusion (using Leukopak filters) with ischemia and reperfusion was compared with function during a second period of ischemia and reperfusion after removal of the filters (granulocytopenia). Flow reduction and reperfusion flow, preload, afterload, and inotropic stimulation were the same during agranulocytic and granulocytopenic perfusion. During agranulocytic perfusion, stunning did not occur (greater than 100% of preischemic function during reperfusion), but when the filters were removed and about 10% of the normal granulocyte count was present, stunning occurred with only 76% return of function at 60 minutes of reperfusion (p less than 0.01). A second series of studied animals with extracorporeal perfusion and granulocyte replete perfusion all had less than 75% return of regional function, indicating that the agranulocytic perfusion and not the extracorporeal aspects of the experiment prevented stunning. We conclude that granulocytes are the direct source of the injury in stunned myocardium and apparently the main source of superoxide in the 15-minute ischemia dog model. Other possible granulocyte-related mechanisms of reperfusion injury include capillary no-reflow, causing microvascular ischemia and degranulation leading to enzyme-induced damage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3