Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte.

Author:

Nassar R,Reedy M C,Anderson P A

Abstract

Sarcomere shortening and ultrastructure of intact isolated myocytes from ventricles of three-week-old and adult rabbits were examined. Cells were fixed and embedded, and after measuring their sarcomere shortening in response to electrical stimulation, they were examined in serial thin sections by electron microscopy. This structure-function analysis showed that adult cells were significantly larger, had longer rest sarcomere lengths, greater amount and velocity of sarcomere shortening, greater velocity of reextension, and shorter contraction duration than immature cells. In immature myocytes, a thin outer shell of myofibrils enveloped a central mass of mitochondria and nuclei, but in adult cells, the cytoskeleton divided the cell into compartments with the mitochondria arranged around and interspersed among the myofibrils. The different arrangement of the organelles and the cytoskeleton at the two ages may account for the shorter rest sarcomere length in the young myocytes and may confer differing internal loads that contribute to their smaller amount and velocity of sarcomere shortening. The corbular and longitudinal sarcoplasmic reticulum were less demarcated in immature than in adult cells. Myocytes from both ages showed postextrasystolic potentiation, suggesting that the sarcoplasmic reticulum modulates calcium at both ages. Restitution of contractility between contractions, obtained by measuring sarcomere shortening of interpolated extrasystoles, was faster in immature than in adult cells and may reflect the structural differences in the sarcoplasmic reticulum. The developmental differentiation in the sarcoplasmic reticulum suggests that changes in compartmentalization of calcium and in the distribution of putative calcium-release sites contribute to the increased contractility of adult myocytes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3