Hearts from diabetic rats are more resistant to in vitro ischemia: possible role of altered Ca2+ metabolism.

Author:

Tani M1,Neely J R1

Affiliation:

1. Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, PA 17822.

Abstract

The effects of whole heart ischemia were studied in isolated perfused rat hearts from control and diabetic animals. When whole heart ischemia was maintained for 30 minutes at 37 degrees C, diabetic hearts recovered 100% whereas hearts from normal animals recovered 30% of their preischemic function. Reperfusion Ca2+ uptake was about 2.5 microM/g dry wt in diabetic hearts compared with 10 microM/g dry wt in control hearts. When the ischemic period was extended to 40, 50, and 60 minutes, diabetic hearts had depressed recovery of ventricular function, and greater Ca2+ overload but reperfusion function was still significantly higher and Ca2+ overload significantly less than in control hearts. Depressed function and increased Ca2+ uptake were both linearly related to low tissue levels of residual high energy phosphates and inversely related to the amount of lactate that accumulated in the tissue during ischemia. However, regression lines relating these metabolic changes to depressed function and increased Ca2+ uptake showed that for any level of residual high energy phosphate or ischemic lactate, diabetic hearts performed much better and had less Ca2+ uptake than control hearts. These effects of diabetes were due to the diabetogenic action of the drugs used since both streptozotocin and alloxan had the same effect and in vivo insulin treatment reversed the effect. Diabetic hearts had a reduced maximum inotropic effect to increased extracellular Ca2+ under control aerobic perfusion conditions. The improved recovery of ventricular function during reperfusion of ischemic hearts from diabetic animals was highly correlated with reduced Ca2+ uptake, and regression lines relating depressed ventricular function to Ca2+ overload showed that data from control and diabetic hearts fell on the same line; that is, when depressed function occurred it was related to increased Ca2+ uptake to the same extent in both control and diabetic hearts. The resistance to ischemia in diabetic hearts was not related to higher tissue levels of high energy phosphates during reperfusion nor to lactate accumulation during ischemia. The observations suggest a role of increased reperfusion Ca2+ influx in ischemic damage and that alterations of sarcolemmal Ca2+ transport systems in diabetic myocardium may account for the greater resistance of these hearts to ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference37 articles.

1. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog;Jennings RB;Am J Pathol,1977

2. Myocardial ATP synthesis and mechanical function following oxygen deficiency;Reibel DK;Am J Physiol,1978

3. Total ischemia in dog hearts, in vitro. 2. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation and sarcolemmal integrity;Reimer KA;Ore Res,1981

4. Metabolic products and myocardial ischemia;Neery JR;Am J Pathol,1981

5. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3