Force, velocity, and power changes during normal and potentiated contractions of cat papillary muscle.

Author:

Chiu Y C,Ballou E W,Ford L E

Abstract

The instantaneous force-velocity relations of cat papillary muscles were studied at different times in the twitch in normal and in postextrasystolic potentiated contractions. Fourteen to sixteen different loads were used to define each of the force-velocity curves. The curves were fitted by a least-squares procedure to the hyperbolic (Hill equation). The hyperbolae were extrapolated to obtain maximum velocity and isometric force and interpolated to obtain maximum power. All three of these values rose more quickly than developed force. Maximum velocity reached 77% of its peak at the earliest time studied, 20-25% of the time to peak force. Developed force achieved 22% of its final value at this time, while extrapolated isometric force and maximum power both reached 44% of their peak values. Postextrasystolic potentiation sufficient to produce a 1.5 to twofold increase in peak developed force produced less than a 20% increase in extrapolated maximum velocity. The results can be interpreted in terms of a model in which the maximum velocity of the contractile elements remains constant during the twitch. Variation in maximum velocity is attributed to a small internal load, equivalent to 6% of twitch force. Since maximum velocity is relatively constant, it does not give a good measure of changes in the force-velocity curves. By contrast, the extrapolated isometric force and maximum power are much more sensitive to changes in the force-velocity curves, and they vary in proportion to each other. The advantage of using interpolated maximum power rather than isometric force to define changes in the curves is that it can be normalized to muscle mass.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference31 articles.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3