Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia.

Author:

Pantely G A1,Malone S A1,Rhen W S1,Anselone C G1,Arai A1,Bristow J1,Bristow J D1

Affiliation:

1. Heart Research Laboratory, Oregon Health Sciences University, Portland 97201-3098.

Abstract

The effects of 1 hour of mild and moderate reductions in coronary blood flow on myocardial high-energy phosphate levels were evaluated. Thirty anesthetized pigs were instrumented with left anterior descending arterial and venous catheters, crystals for instantaneous wall thickness, and a fluid-filled occluder. Measurement of myocardial blood flow was performed with microspheres, and a series of myocardial biopsies also was performed. In 10 pigs, overall coronary blood flow was lowered by 22%, with a fall in subendocardial-to-subepicardial flow ratio from 1.11 to 0.54 and in wall thickening from 33% to 15%. Subendocardial flow fell 48%. Coronary blood flow and thickening were constant during 1 hour of ischemia. Phosphocreatine (mumol/g wet wt) in the subendocardial third of the ischemic zone fell from 7.6 to 3.8 at 5 minutes of ischemia (p less than 0.005 versus control) and returned to normal (7.9) at 60 minutes (p = NS), despite ongoing ischemia. Subendocardial ATP (mumol/g wet wt) fell slowly from 4.3 and leveled off at 2.1 at 60 minutes of ischemia (p less than 0.001 versus control). Similar regeneration of phosphocreatine was found in seven additional pigs, with a 43% transmural reduction in coronary blood flow and a 66% reduction in subendocardial flow. No significant changes in ATP and phosphocreatine were noted in two different control groups (n = 13 pigs). The regeneration of phosphocreatine despite ongoing ischemia and low ATP levels was not related to changes in myocardial oxygen demand or consumption, or in regional function during the period of ischemia. This may reflect 1) a successful downregulation of the energy needs of the ischemic myocardium to maintain cell viability, or 2) a metabolic abnormality in the ability of the cells to produce ATP primarily or by use of phosphocreatine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3