Influence of extracellular magnesium on capillary endothelial cell proliferation and migration.

Author:

Banai S1,Haggroth L1,Epstein S E1,Casscells W1

Affiliation:

1. Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.

Abstract

We investigated the role of extracellular magnesium on capillary endothelial cell migration and proliferation, components of endothelial cell function that play an important role in angiogenesis and wound healing. Cell migration and proliferation were tested in six different MgSO4 concentrations and in various culture conditions. The Boyden chamber procedure was used to evaluate migration of bovine adrenal cortex capillary endothelial cells. We found that low magnesium concentration inhibited cell migration, but a dose-dependent increase in migration was observed when magnesium level was increased beyond the normal serum concentration (up to 2.4 mM magnesium; p less than 0.0001). Cell proliferation was also inhibited by very low magnesium concentration, an effect observed under all conditions studied. When cell proliferation was stimulated by acidic or basic fibroblast growth factors, it appeared that a ceiling was reached, an increasing magnesium concentration had no additional stimulatory effect. However, a dose-dependent increase in proliferation (p less than 0.005) was observed when magnesium concentration was increased above the normal serum level (0.8 mM) in culture conditions that did not cause marked cell proliferation. Thus, magnesium has an important role in endothelial cell migration and proliferation: very low extracellular magnesium concentrations inhibit and supranormal levels enhance both migration and proliferation. These results suggest that magnesium deficiency might adversely influence the healing and reendothelialization of vascular injuries and the healing of myocardial infarction and might also result in delayed or inadequate angiogenesis, effects potentially leading to infarct expansion and inadequate collateral development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3