Chaotic activity in a mathematical model of the vagally driven sinoatrial node.

Author:

Michaels D C1,Chialvo D R1,Matyas E P1,Jalife J1

Affiliation:

1. Department of Pharmacology, State University of New York Health Science Center, Syracuse 13210.

Abstract

Phase-locking behavior and irregular dynamics were studied in a mathematical model of the sinus node driven with repetitive vagal input. The central region of the sinus node was simulated as a 15 x 15 array of resistively coupled pacemakers with each cell randomly assigned one of 10 intrinsic cycle lengths (range 290-390 msec). Coupling of the pacemakers resulted in their mutual entrainment to a common frequency and the emergence of a dominant pacemaker region. Repetitive acetylcholine (ACh; vagal) pulses were applied to a randomly selected 60% of the cells. Over a wide range of stimulus intensities and basic cycle lengths, such perturbations resulted in a large variety of stimulus/response patterns, including phase locking (1:1, 3:2, 2:1, etc.) and irregular (i.e., chaotic) dynamics. At a low ACh concentration (1 microM), the patterns followed the typical Farey sequence of phase-locked behavior. At a higher concentration (5 microM), period doubling and aperiodic patterns were found. When a single pacemaker cell was perturbed with repetitive ACh pulses, qualitatively similar results were obtained. In both types of simulation, chaotic behavior was investigated using phase-plane (orbital) plots, Poincaré mapping, and return mapping. Period-doubling bifurcations (2:2, 4:4, and 8:8) were found temporally and spatially within the array. Under certain conditions of stimulation, the attractor in the return map during chaotic activity of the single cell resembled the Lorenz tent map. However, when electrical coupling between cells was allowed, the interactions with neighboring cells exhibiting chaotic dynamics resulted in characteristic alterations of the attractor geometry. Our results suggest that irregular dynamics obeying the rules derived from other chaotic systems are present during vagal stimulation of the sinus node. In addition, application of the same analytical tools to the analysis of simulation of reflex vagal control of sinus rate suggests that chaotic dynamics can be obtained in the physiologically relevant case of the baroreceptor reflex loop. These results may provide insight into the mechanisms of dynamic vagal control of heart rate and may help to provide insights into clinically relevant disturbances of cardiac rate and rhythm.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference31 articles.

1. Jalife J: Mutual entrainment and electrical coupling as mechanisms for synchronous firing of rabbit sino-atrial pacemaker cells. / Physiol (Lond) 1984;356:221-243

2. Effects of changes in excitability and intercellular coupling on synchronization in the rabbit sino-atrial node.

3. A mathematical model of the effects of acetylcholine pulses on sinoatrial pacemaker activity;Michaels DC;Ore Res,1984

4. Dynamic interactions and mutual synchronization of sinoatrial node pacemaker cells;Michaels DC;Ore Res,1986

5. Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis;Michaels DC;Ore Res,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3