Neuronal sodium homoeostatis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart.

Author:

Schömig A1,Kurz T1,Richardt G1,Schömig E1

Affiliation:

1. Department of Cardiology, University of Heidelberg, Germany.

Abstract

Calcium-independent noradrenaline release was studied in the isolated perfused rat heart under conditions of normoxia, cyanide intoxication, and ischemia. The release of endogenous noradrenaline and dihydroxyphenylglycol were determined by high-performance liquid chromatography. The release of dihydroxyphenylglycol, the main neuronal noradrenaline metabolite, was used as an indicator of the free axoplasmic amine concentration. When storage function of neuronal vesicles was disturbed by Ro 4-1284 or trimethyltin, high dihydroxyphenylglycol release was observed without concomitant overflow of noradrenaline. If, however, these agents were combined with inhibition of Na+K+-ATPase or with veratridine-induced entry of sodium into the neuron, both dihydroxyphenylglycol and noradrenaline were released. Noradrenaline release was independent of extracellular calcium and was suppressed by blockade of neuronal catecholamine uptake (uptake1), indicating nonexocytotic noradrenaline liberation from the sympathetic nerve ending. This release critically depended on two conditions: 1) increased cytoplasmic concentrations of noradrenaline within the sympathetic neuron and 2) intraneuronal sodium accumulation. Both conditions together were required to induce noradrenaline efflux across the plasma membrane using the uptake1 carrier in reverse of its normal transport direction. A disturbed energy status of the sympathetic neuron, induced by cyanide intoxication or ischemia, likewise caused calcium-independent noradrenaline release by interfering with both vesicular storage function and neuronal sodium homoeostatis. Again, release was sensitive to uptake1 blockade. Since neuronal sodium accumulation was the rate-limiting step, release was further accelerated when residual Na+,K+-ATPase activity was inhibited. Na+-H+ exchange was identified as the predominant pathway of sodium entry into the sympathetic nerve ending in ischemia, and its inhibition by amiloride and ethylisopropylamiloride markedly suppressed ischemia-induced noradrenaline release.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3