Positive inotropic effect of calcitonin gene-related peptide mediated by cyclic AMP in guinea pig heart.

Author:

Ishikawa T1,Okamura N1,Saito A1,Masaki T1,Goto K1

Affiliation:

1. Department of Pharmacology, University of Tsukuba, Japan.

Abstract

The mechanism of cardiac actions of rat calcitonin gene-related peptide (CGRP) was analyzed on isolated guinea pig hearts. CGRP exerted a positive inotropic effect in a dose-dependent manner on the electrically driven left atria but not on the ventricles. Immunohistochemical studies demonstrated that CGRP-like immunoreactive nerves were distributed densely in the myocardia of the atria but only sparsely in those of the ventricles. The CGRP-induced augmentation of the contraction was accompanied by the shortening of the time to peak force and the increase in the relaxation velocity. The positive inotropic response to CGRP was significantly enhanced by isobutylmethylxanthine and was attenuated by adenosine. CGRP increased the action potential amplitude and prolonged action potential duration at the level of 50% repolarization in the left atria. In the preparations, which were partially depolarized with an increase in extracellular potassium, CGRP induced slow response action potentials. These electrophysiological results indicate that CGRP causes an increase in the slow inward Ca2+ current. The cyclic AMP content in the left atria significantly increased following the addition of CGRP, the time course of which was nearly consistent with that of the augmentation of the contractile force. In the membrane preparation of the atria, the activity of adenylate cyclase was enhanced by CGRP in a dose-dependent manner. These effects of CGRP are qualitatively similar to those of beta-adrenoceptor stimulation. It is concluded that the CGRP-induced response in the guinea pig atria is attributed to the activation of adenylate cyclase via stimulation of its specific receptor and the subsequent increase in the intracellular cyclic AMP level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3