Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney.

Author:

Hayashi K1,Epstein M1,Loutzenhiser R1

Affiliation:

1. Nephrology Section, Veterans Administration Medical Center, Miamia, FL 33125.

Abstract

The capacity of small arteries to respond to increased intravascular pressure may be altered in hypertension. In the kidney, hypertension is associated with a compensatory shift in the autoregulatory response to pressure. To directly determine the effects of established hypertension on the renal microvascular response to changes of perfusion pressure, we evaluated pressure-induced vasoconstriction in hydronephrotic kidneys isolated from normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Vessel diameters of interlobular arteries (ILAs) and afferent and efferent arterioles were determined by computer-assisted videomicroscopy during alterations in renal arterial pressure (RAP) from 80 to 180 mm Hg. Increased RAP induced a pressure-dependent vasoconstriction in preglomerular vessels (afferent arterioles and ILAs), but not in postglomerular vessels (efferent arterioles). The calcium antagonist nifedipine prevented pressure-induced afferent arteriolar vasoconstriction with a similar half-maximal inhibitory concentration (IC50) (WKY, 63 +/- 27 vs. SHR, 60 +/- 32 nM). The pressure-activation curves for ILAs in SHR and WKY were similar. In contrast, the pressure-activation curve for afferent arterioles in SHR kidneys exhibited a rightward shift, which was observed at every segment of the afferent arteriole (i.e., near ILA, at midportion, and near glomerulus). These findings demonstrate that the ILA and the afferent arteriole both possess the ability to constrict in response to increased pressure, whereas this property is lacking in the efferent arteriole. Hypertension was associated with a compensatory shift in the pressure response of the afferent arteriole, such that higher RAPs were required to elicit vasoconstriction in this vessel.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference48 articles.

1. Renal vasodilation and uncoupling of blood flow and filtration rate autoregulation

2. Circulatory autoregulation in the fully isolated kidney and in the hormonalty supported kidney;Waugh WH;Ore Res,1964

3. Distal Tubular Feedback Control of Renal Hemodynamics and Autoregulation

4. Participation of renal cortical prostaglandins in the regulation of glomerular filtration rate

5. Autoregulation of single nephron filtration rate in the presence and absence of now to the macula densa;Knox FG;Ore Res,1974

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3