Endothelin induces a nonselective cation current in vascular smooth muscle cells.

Author:

Chen C1,Wagoner P K1

Affiliation:

1. Department of Analytical Pharmacology, Glaxo Research Institute, Research Triangle Park, N.C.

Abstract

The potent vasoconstrictor endothelin leads to smooth muscle cell depolarization and increases in intracellular Ca2+. Although effects of endothelin on calcium channels have been described, it also has been speculated that endothelim may activate additional ion channels. The purpose of the present study was to identify an alternative ion current that could play a role in depolarizing cells in response to vasoconstrictors like endothelin and vasopressin. The effects of endothelin, vasopressin, sarafotoxin S6b, and phenylephrine were assessed using whole-cell patch-clamp recordings from primary dissociated rat aortic or mesenteric arterial smooth muscle cells cultured for 24-72 hours. From the usual resting potentials of these cells of -50 to -60 mV, endothelin (1-100 nM) induced a depolarization via an increase in membrane conductance. This depolarization was phasic, oscillating repeatedly from the resting potential to a relatively depolarized level and back to the resting potential. From a holding potential of -60 mV, endothelin-1, endothelin-3, vasopressin, or sarafotoxin S6b (but not phenylephrine) induced transient inward currents that also could be phasic. In external sodium, lithium, or cesium (but not Tris) and in internal potassium or cesium, these currents reversed near 0 mV. Although nifedipine-insensitive, the inward currents were absent in zero calcium, barium, or strontium, or in the presence of cobalt or nickel. These results represent the first report of a nonselective cation current in primary vascular smooth muscle cells that is calcium dependent and that could be responsible for the depolarizations induced from the resting potential by vasoconstrictors such as endothelin.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3