Skeletal muscle metaboreceptor stimulation opposes peak metabolic vasodilation in humans.

Author:

Sinoway L1,Prophet S1

Affiliation:

1. Division of Cardiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033.

Abstract

The total blood flow requirements of a large muscle mass can exceed the maximal cardiac output generated by the heart during exercise. Therefore, to maintain blood pressure, muscle vasodilation must be opposed by sympathetic vasoconstriction. The primary neural signal that increases sympathetic outflow is unclear. In an effort to isolate the vasoconstricting mechanism that opposes vasodilation, we measured the peak forearm vascular conductance response after the release of 10 minutes of forearm circulatory arrest under five separate study conditions: 1) no leg exercise, 2) low-level supine leg exercise, 3) low-level supine leg exercise with leg circulatory arrest after exercise, 4) high-level supine leg exercise, and 5) high-level supine leg exercise with leg circulatory arrest after exercise. We found that both high-workload conditions reduced peak forearm conductance below the no-leg exercise condition (a 34% reduction during leg exercise and a 52% reduction during leg exercise followed by leg circulatory arrest). In addition, at each workload, leg circulatory arrest after exercise, which isolated the skeletal muscle metaboreceptor contribution to vasoconstriction, reduced forearm conductance by approximately 20% below the values noted for leg exercise alone (combined central command and metaboreceptor stimulation). In a separate group of subjects, peak forearm blood flow was measured during lower-body negative pressure to levels up to -40 mm Hg, a maneuver that unloads high- and low-pressure baroreceptors. This intervention did not affect peak forearm blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3