Electrophysiology and ultrastructure of canine subendocardial Purkinje cells isolated from control and 24-hour infarcted hearts.

Author:

Boyden P A1,Albala A1,Dresdner K P1

Affiliation:

1. Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York.

Abstract

Ventricular arrhythmias that accompany myocardial infarction in dogs may be secondary to the altered electrophysiological properties of the subendocardial Purkinje fibers that survive 24 hours after the coronary occlusion. To better understand the ionic mechanisms that underlie the altered electrical activity of these fibers, we have dispersed, using an enzymatic technique, Purkinje cells from the subendocardium of the infarcted ventricle (IZPCs) and compared their electrical and structural properties to Purkinje cells dispersed from fiber strands (SPCs) and from the subendocardium of the noninfarcted ventricle (NZPCs). Ultrastructural analysis of these cells shows that IZPCs contain an increased number of lipid droplets when compared with the SPCs and NZPCs. In addition, transmembrane action potentials of IZPCs have reduced resting potentials, action potential amplitudes, and upstroke velocity and are increased in duration when compared with either SPCs or NZPCs. Input resistance of IZPCs is increased over that measured in control cells (SPCs and NZPCs). Furthermore, the time course of the process of electrical restitution of action potential duration is altered in IZPCs with long action potentials. Finally, using K+-sensitive microelectrode techniques, we have determined that intracellular free K+ activity (aKi) in IZPCs (93.7 +/- 15 mM) is not significantly different from control aKi measurements (SPC, 106 +/- 13 mM; NZPC, 103 +/- 12 mM). Thus a reduction in aKi does not provide a basis for the reduced resting potentials observed in IZPCs. By studying the relation between the resting potential and log [K+]o we determined that in IZPCs with reduced resting potentials, there is a significant increase in the PNa/PK ratio when compared with control. In summary, to better understand the cellular basis of ventricular arrhythmias postinfarction, we have developed a single cell model that will allow for more rigorous electrophysiological studies of the specific ionic currents that underlie the abnormal electrophysiology.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference41 articles.

1. Ventricular arrhythmias in ischemic heart disease: Mechanism, prevalence, significance, and management

2. Arrhythmias in the first hours of acute myocardial infarction

3. HI. The electrophysiology of lethal arrhythmias: Possible electrophysiological mechanisms for lethal arrhythmias accompanying myocardial ischemia and infarction;Wit AL;Circulation,1975

4. Janse MJ: Reentry Rhythms in Fozzard H Haber E Jennings RB Kate AM Morgan HE (eds): The Heart and Cardiovascular System New York Raven Press Publishers 1986 pp 1203-1233

5. Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs;Friedman PL;Ore Res,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3