Direct actions of cocaine on cardiac cellular electrical activity.

Author:

Przywara D A1,Dambach G E1

Affiliation:

1. Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201.

Abstract

The hypothesis that cocaine has Class I-type antiarrhythmic drug effects was tested in tissues isolated from rabbit heart with standard microelectrode methods. Propranolol (1 microM) was used to block beta-adrenergic effects. The actions of cocaine on cellular electrophysiology were concentration- and time-dependent and were reversible. In paced right atrial (RA) and right ventricular papillary (RVP) tissues, cocaine produced a profound prolongation of the effective refractory period (ERP) assessed by either premature stimulation or minimum pacing interval. ERP was increased up to eightfold in RA tissue and doubled in RVP tissue by 60 microM cocaine. This concentration of cocaine depressed action potential phase 0 depolarization 80% in RA tissue and 53% in RVP tissue but had no effect on resting membrane potentials. Automaticity was moderately depressed in sinus node (34% decrease in rate) but not in tricuspid valve cells. Phase 0 depolarization was not altered in these spontaneously active slow-response cells. Repolarization was depressed in RA, tricuspid valve, and sinus node cells leading to a twofold increase in action potential duration during exposure to cocaine. Evidence from the effects on cellular action potentials suggests that cocaine affects both fast Na+ channels and repolarizing K+ but not Ca2+ channels. We conclude that cocaine has Class I-type activity and the effects on ERP are extreme.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3