Cyclic guanosine monophosphate-enhanced sequestration of Ca2+ by sarcoplasmic reticulum in vascular smooth muscle.

Author:

Twort C H1,van Breemen C1

Affiliation:

1. Department of Pharmacology, University of Miami School of Medicine, Florida.

Abstract

The purpose of this study was to investigate the effects of the intracellular messenger cyclic GMP (cGMP) on sequestration of cytosolic calcium (Ca2+) into the intracellular Ca2+ store (the sarcoplasmic reticulum) of vascular smooth muscle. Using saponin-skinned primary cultures of rat aortic smooth muscle, we investigated the effect of cGMP on 45Ca uptake in monolayers of cells. The intracellular store was loaded with Ca2+ by exposing the skinned cells to a 45Ca-labeled 1-microM free Ca2+-containing solution for varying durations (0-20 minutes). Addition of 10 microM cGMP to six monolayers increased both the initial Ca2+ uptake at 2 minutes (control, 240 +/- 8 pmol Ca2+/10(6) cells; + cGMP 295 +/- 7; mean +/- SEM; n = 6, p less than 0.01) and the final steady-state uptake reached at 20 minutes (control, 0.96 +/- 0.03 nmol Ca2+/10(6) cells; + cGMP 1.12 +/- 0.03, p less than 0.02). This stimulation of uptake was quantitatively similar to that caused by 10 microM cyclic AMP. It occurred at varying ambient cytosolic Ca2+ concentrations (0.1-1.0 microM Ca2+) and was not further enhanced by addition of 10 microM cGMP-dependent protein kinase. The dose-response of stimulation of Ca2+ uptake with cGMP indicated an ED50 of 5 nM cGMP. The release of Ca2+ from the sarcoplasmic reticulum in response to inositol 1,4,5-trisphosphate or caffeine was unaffected by cGMP. We conclude that the relaxation of vascular smooth muscle with cGMP-producing vasodilators is mediated in part by sequestration of cytosolic Ca2+ by the sarcoplasmic reticulum.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference17 articles.

1. Murad F: Cyclic guanosine monophosphate as a mediator of vasodilation. / Clin Invest 1986;78:1-5

2. Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips;Holzmann S;J Cyclic Nucleotide Res,1982

3. Endothelium-dependent and nitrovasodilator-induced relaxation and vascular smooth muscle: Role of cyclic GMP;Rapoport R;J Cyclic Nucleotide Protein Phosphor Res,1983

4. Atriopeptin II relaxes and elevates cGMP in bovine pulmonary artery but not vein

5. Katsuki S Arnold WP Murad F: Effects of sodium nitroprusside nitrogh/cerin and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues./ Cyclic Nucleotide Res 1977;3:239-247

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3