Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts.

Author:

Edes I1,Kranias E G1

Affiliation:

1. Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH 45267-0575.

Abstract

The incorporation of [32P]inorganic phosphate into membranous, myofibrillar, and cytosolic proteins was studied in Langendorff-perfused guinea pig hearts treated with phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoylglycerol (D8G), which are potent activators of protein kinase C. Control hearts were perfused with an inactive phorbol ester (4 alpha-phorbol 12,13-didecanoate), which does not cause activation of protein kinase C. To ensure the blockade of different receptor systems, the perfusions were carried out in the presence of prazosin, propranolol, and atropine. Perfusion of hearts with either PMA (4 microM) or D8G (200 microM) was associated with a negative effect on left ventricular inotropy and relaxation. Examination of the 32P incorporation into various fractions revealed that there were no increases in the degree of phosphorylation of phospholamban in sarcoplasmic reticulum, and troponin I and C protein in the myofibrils, although these proteins were found to be substrates for protein kinase C in vitro. However, in the same hearts, there were significant changes in the 32P incorporation into a 28-kDa cytosolic-protein. Examination of the activity levels of protein kinase C in hearts perfused with PMA indicated a redistribution of this activity from the cytosolic to the membrane fraction, suggesting the activation of the enzyme in vivo. These findings indicate that cardiac regulatory phosphoproteins, which may be phosphorylated by protein kinase C in vitro, are not substrates for protein kinase C in beating hearts perfused with phorbol esters or diacylglycerol analogues.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PKC and PKN in heart disease;Journal of Molecular and Cellular Cardiology;2019-03

2. The Role of Calcium Handling Mechanisms in Reperfusion Injury;Current Pharmaceutical Design;2019-01-22

3. Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin;Advances in Experimental Medicine and Biology;2017

4. Altered Calcium Handling in Reperfusion Injury;Medicinal Chemistry;2016-02-08

5. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses;Journal of Clinical Investigation;2014-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3