Contributions of intracellular and extracellular Ca2+ pools to activation of myosin phosphorylation and stress in swine carotid media.

Author:

Ratz P H,Murphy R A

Abstract

Contractile agonists can mobilize Ca2+ from both intracellular and extracellular stores in smooth muscle. This study addresses the role of Ca2+ mobilization as it relates to the complex manner by which Ca2+ regulates the contractile system in smooth muscle. In swine carotid media, both histamine and phenylephrine produced initial rapid increases in myosin phosphorylation and stress. Stress was sustained for the duration of the stimulus while myosin phosphorylation slowly declined to steady-state levels. Removal of extracellular Ca2+ or elimination of cellular Ca2+ influx did not dramatically reduce the initial rapid increase in myosin phosphorylation produced by either agonist but reduced steady-state levels of myosin phosphorylation to basal values. Initial rapid increases in stress were seen, but stress was not maintained. Following depletion of Ca2+ from sarcoplasmic reticulum, muscle activation by Ca2+ influx in the presence of phenylephrine occurred without an initial transient in myosin phosphorylation, and stress developed slowly. Steady-state levels of myosin phosphorylation and stress were not different from control values. Similar results were obtained with histamine, although a small transient in myosin phosphorylation was also seen. These results are consistent with the hypothesis that the role of the sarcoplasmic reticulum in vascular smooth muscle is to provide high myoplasmic Ca2+ concentrations causing extensive myosin phosphorylation and rapid crossbridge cycling leading to rapid stress development. In the presence of extracellular Ca2+, control levels of agonist-induced steady-state stress and myosin phosphorylation could be produced without an initial phosphorylation transient when intracellular Ca2+ pools were depleted, suggesting that the sarcoplasmic reticulum is not required for the regulation of steady-state myoplasmic [Ca2+] during "latch".

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3