Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium.

Author:

Weber K T1,Janicki J S1,Shroff S G1,Pick R1,Chen R M1,Bashey R I1

Affiliation:

1. Department of Medicine, Michael Reese Hospital, Illinois 60616.

Abstract

Cardiac muscle is tethered within a fibrillar collagen matrix that serves to maximize force generation. In the human pressure-overloaded, hypertrophied left ventricle, collagen concentration is known to be increased; however, the structural and biochemical remodeling of collagen and its relation to cell necrosis and myocardial mechanics is less clear. Accordingly, this study was undertaken in a nonhuman primate model of left ventricular hypertrophy caused by gradual onset experimental hypertension. The amount of collagen, its light microscopic features, and proportions of collagen types I, III, and V were determined together with diastolic and systolic mechanics of the intact ventricle during the evolutionary, early, and late phases of established left ventricular hypertrophy (4, 35, and 88 weeks, respectively). In comparison to controls, we found 1) increased collagen at 4 weeks, as well as a greater proportion of type III, in the absence of myocyte necrosis; 2) collagen septae were thick and dense at 35 weeks, while the proportion of types I and III had converted to control; 3) necrosis was evident at 88 weeks, and the structural remodeling and proportion of collagen types I and III reflected the extent of scar formation; and 4) unlike diastolic myocardial stiffness, which was unchanged at 4, 35, or 88 weeks, the systolic stress-strain relation of the myocardium was altered in either a beneficial or detrimental manner in accordance with structural remodeling of collagen and scar formation. Thus, early in left ventricular hypertrophy, reactive fibrosis and collagen remodeling occur in the absence of necrosis while, later on, reparative fibrosis is present.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 555 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3