Arrhythmic activity in reoxygenated guinea pig papillary muscles and ventricular cells.

Author:

Hayashi H,Ponnambalam C,McDonald T F

Abstract

Aftercontractions, delayed afterdepolarizations, and automaticity occurred in guinea pig papillary muscles that were reoxygenated after hypoxic conditioning. The emergence of dysfunction was dependent on the severity of hypoxic conditioning and on stimulation during reoxygenation. After 60 minutes of substrate-free hypoxia, reoxygenation induced automaticity in a high proportion of stimulated muscles; the automaticity appeared within 1 minute and lasted for 10-20 minutes. After similar conditioning, muscles reoxygenated for 7-15 minutes were stimulated at various cycle lengths. The incidence of automaticity and the amplitudes of delayed events had W-shaped dependencies on cycle length (200-1,000 msec), whereas coupling intervals had M-shaped dependencies. In ventricular myocytes that displayed automaticity after reoxygenation, extrasystolic upstrokes arose smoothly from delayed afterdepolarizations that reached threshold. In tissue, extrasystolic upstrokes usually rose sharply from delayed afterdepolarizations that were distinctly subthreshold. Thus, threshold was reached elsewhere in the tissue. Further evidence of electrical heterogeneity was obtained from surface mapping of delayed-afterdepolarization amplitude in reoxygenated muscle. There were no detectable aftercontractions, delayed afterdepolarizations, or signs of automaticity in quiescent reoxygenated muscles or in stimulated reoxygenated muscles that were treated with 1 microM ryanodine. We conclude that the dysfunction precipitated by reoxygenation is due to synchronized spontaneous releases of calcium from overloaded sarcoplasmic reticulum.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3