Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange.

Author:

Tani M1,Neely J R1

Affiliation:

1. Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania.

Abstract

The roles of H+-Na+ and Na+-Ca2+ exchange in the depression of ventricular function were studied in the reperfused isolated ischemic rat heart. Zero-flow global ischemia was induced for either 15 or 30 minutes and was followed by 30 minutes of aerobic reperfusion. Intracellular Na+ (Na+i) and 45Ca2+ uptake were measured during ischemia and reperfusion. Accumulation of Na+i was modified by prior glycogen depletion and by treatment with amiloride, a H+-Na+ exchange inhibitor, or monensin, a Na+ ionophore. Na+i rose continuously during ischemia and rapidly during the first two minutes of reperfusion. The larger inhibitory effect of amiloride and preischemic glycogen depletion was on Na+i accumulation during reperfusion; this finding suggests that the uptake occurs by H+-Na+ exchange. Reduction of Na+i accumulation by glycogen depletion was associated with less lactate and, presumably, H+ production and accumulation during ischemia. The rapid increase in Na+i during early reperfusion may reflect the readjustment of the low intracellular pH resulting from ischemia. The level of Na+i at the end of ischemia and especially after two minutes of reperfusion were linearly correlated with 45Ca2+ uptake and depression of ventricular function during subsequent reperfusion. This highly significant correlation between Na+i and 45Ca2+ uptake when Na+i was varied by several independent procedures, including monensin, strongly suggests that reperfusion 45Ca2+ uptake occurs at least in part by Na+-Ca2+ exchange. The rate of 45Ca2+ uptake during reperfusion was linearly and highly significantly correlated with elevation of diastolic pressure, reduced developed pressure, and decreased recovery of ventricular function. The data strongly support a mechanism of ischemic cell damage that involves excessive production and accumulation of H+ during ischemia that exchanges for extracellular Na+ during ischemia and rapidly during the first few minutes of reperfusion. Increased Na+i then causes excessive 45Ca2+ uptake and depressed recovery of cellular functions with continued reperfusion. Increased levels of Na+i may be a major event that couples a decreased intracellular pH during ischemia to excessive 45Ca2+ uptake and depressed recovery of cellular function with reperfusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference39 articles.

1. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts;Neery JR;Ore Res,1984

2. Kinetics of calcium accumulation in acute myocardiaJ ischemic injury;Shen AC;Am J Pathol,1972

3. Effects of Ca2+ antagonism on energy metabolism: Ca2+ and heart function after ischemia;Watts JA;Am JPhysiol,1980

4. Calcium, strontium, and barium movements during ischemia and reperfusion in rabbit ventricle. Implication for myocardial preservation;Shine KI;Ore Res,1978

5. The role of calcium in the ischemic myocardium;Nayler WG;Am J Pathol,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3