Circulatory assistance by intrathoracic pressure variations: optimization and mechanisms studied by a mathematical model in relation to experimental data.

Author:

Beyar R1,Halperin H R1,Tsitlik J E1,Guerci A D1,Kass D1,Weisfeldt M L1,Chandra N C1

Affiliation:

1. Peter Belfer Laboratory for Myocardial Research, Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland.

Abstract

The hemodynamic effects of phasic variations in intrathoracic pressure (ITP) timed to the cardiac cycle were predicted by a mathematical model and were compared with data from canine experimental studies. The model was used to predict the hemodynamic effects of changing the onset of the ITP rise relative to the start of cardiac systole, as well as the hemodynamic effects of changes in the duration and amplitude of the ITP rise. The predictions of the model were compared with hemodynamic data from seven anesthetized dogs. Cardiac function was depressed with large doses of verapamil and propranolol, and the hearts were atrioventricular sequentially paced at a rate of 72 beats/min. Phasic ITP variations were generated by a perithoracic vest and were electronically timed to the cardiac cycle. The model predicted, and the experimental data confirmed, that phasic intrathoracic pressure variations generated by vest inflation, timed to the cardiac cycle, can augment both peak and mean aortic flow. The following predictions of the model were also confirmed by the experimental data: 1) Maximum flow augmentation occurs when the onset of the ITP rise is simultaneous with the onset of left ventricular isovolumic contraction, and the ITP rise has a duration of 400 msec. 2) The magnitude of the flow augmentation is a function of the amplitude of the ITP rise. The experimental data showed that there was little further flow augmentation when the ITP rise was greater than 30-40 mm Hg. 3) The magnitude of flow augmentation was inversely proportional to the peak left ventricular elastance (Emax). The best fit between the measured and predicted flow augmentations was obtained for an assumed Emax of 0.5 mm Hg/ml, while Emax measurements in three dogs, using a volume conductance catheter and transient vena caval occlusion, yielded values of 0.4-1.6 mm Hg/ml. Thus, both the mathematical model and canine experiments showed that relatively low-amplitude ITP variations, rising synchronously with the onset of cardiac systole and having an optimal duration, assist the failing heart by augmentation of aortic flow. The degree of cardiac assistance decreases if the ITP variations do not rise synchronously with the onset of systole, or if their duration is not optimal. Thus, properly applied ITP variations may be used as an efficient, noninvasive method to temporarily assist the failing heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling patient specific cardiopulmonary interactions;Computers in Biology and Medicine;2022-12

2. Shock;Surgical Intensive Care Medicine;2016

3. Cardiopulmonary Interactions;Pediatric Critical Care Medicine;2014

4. Physiologic Foundations of Cardiopulmonary Resuscitation;Pediatric Critical Care;2011

5. Shock;Surgical Intensive Care Medicine;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3