In vivo viscoelastic behavior in the human aorta.

Author:

Imura T1,Yamamoto K1,Satoh T1,Kanamori K1,Mikami T1,Yasuda H1

Affiliation:

1. Department of Cardiovascular Medicine, School of Medicine, Hokkaido University, Sapporo, Japan.

Abstract

To characterize the viscoelastic properties of the human aorta in vivo, the pressure-diameter relation was determined in the abdominal aorta in 15 subjects. Diameter was measured noninvasively with a highly sensitive ultrasonic displacement meter, while intra-aortic pressure was measured with a catheter tip micromanometer inserted from the femoral artery. The frequency-dependent changes in the pressure-strain modulus (Ep) of the aorta and the phase lag of diameter to pressure were calculated by frequency analysis of these wave forms at the mean blood pressure of 109 mm Hg. The Ep and the phase lag at the fundamental frequency component (1.2 +/- 0.3 Hz, mean +/- SD) were (1.52 +/- 0.57) x 10(6) dyne/cm2 and -6.7 degrees +/- 2.1 degrees, respectively. Although the phase lag at the fundamental frequency was in good agreement with the published in vitro data, the calculated phase lags above the second harmonic were inconsistent, which was probably due to the nonlinearity in the pressure-diameter relation. To separate the effect of this nonlinearity, analysis was conducted with a model consisting of a static nonlinear component representing the elasticity and a dynamic linear component representing the viscosity. This method of analysis revealed that the phase lag due to the viscous component provided relatively flat frequency response to the 10th harmonic. It was confirmed that the aortic wall viscosity showed no apparent difference between the in vivo and the in vitro experimental conditions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale computational modeling of arterial micromechanics: A review;Computer Methods in Applied Mechanics and Engineering;2024-05

2. Active and passive mechanical characterization of a human descending thoracic aorta with Klippel-Trenaunay syndrome;Journal of the Mechanical Behavior of Biomedical Materials;2023-12

3. A review on the biomechanical behaviour of the aorta;Journal of the Mechanical Behavior of Biomedical Materials;2023-08

4. Numerical simulation of the aortic arch behavior;Digital Human Modeling and Medicine;2023

5. Viscoelasticity of human descending thoracic aorta in a mock circulatory loop;Journal of the Mechanical Behavior of Biomedical Materials;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3