Current fluctuations and oscillations in smooth muscle cells from hog carotid artery. Role of the sarcoplasmic reticulum.

Author:

Désilets M1,Driska S P1,Baumgarten C M1

Affiliation:

1. Department of Physiology, University of Ottawa, Ontario, Canada.

Abstract

Electrical activity of enzymatically isolated, smooth muscle cells from hog carotid arteries was recorded under current clamp and voltage clamp. Under the experimental conditions, membrane potential usually was not stable, and spontaneous hyperpolarizing transients of approximately 100-msec duration were recorded. The amplitude of the transients was markedly voltage dependent and ranged from about 20 mV at a membrane potential of 0 mV to undetectable at membrane potentials negative to -60 mV. Under voltage clamp, transient outward currents displayed a similar voltage dependency. These fluctuations reflect a K+ current; they were abolished by 10 mM tetraethylammonium chloride, a K+ channel blocker, and the current fluctuations reversed direction in high extracellular K+ concentration. Modulators of intracellular Ca2+ concentration also affected electrical activity. Lowering intracellular Ca2+ concentration by addition of 10 mM EGTA to the pipette solution or suppressing sarcoplasmic reticulum function by superfusion with caffeine (10 mM), ryanodine (1 microM), or histamine (3-10 microM) blocked the rapid voltage and current spikes. However, caffeine and histamine induced a much slower hump of outward current before blocking the rapid spikes. This slower transient outward current could be elicited only once after external Ca2+ was removed and is consistent with an activation of K+ channels by Ca2+ released from internal stores. In contrast, removal of external Ca2+ alone failed to abolish the rapid spikes. These results suggest that 1) a Ca2+-dependent K+ conductance can markedly affect the electrical behavior of arterial smooth muscle cells and 2) internal Ca2+ stores, probably the sarcoplasmic reticulum, can support rapid and frequent releases of Ca2+. Exposure to a low concentration of histamine (3 microM) caused synchronization of the irregular, rapid fluctuations giving rise to slow, periodic oscillations of Ca2+-activated K+ conductance with a frequency of 0.1-0.3 Hz. These regular oscillations are reminiscent of periodic Ca2+-induced Ca2+ release, were inhibited by 10 mM caffeine, and point to a modulation of sarcoplasmic reticulum Ca2+ release by histamine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3