Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation.

Author:

Koller A1,Kaley G1

Affiliation:

1. Department of Physiology, New York Medical College, Valhalla 10595.

Abstract

In cremaster muscle of pentobarbital-anesthetized rats, temporary occlusion of an arteriole increased red blood cell velocity (mean increase, 8.2 +/- 1.0 mm/sec from a control velocity of 7.9 +/- 0.7 mm/sec) in proximal parallel arteriolar branches (mean control diameter, 19.4 +/- 0.6 microns). Increases in flow velocity were consistently followed by proportional delayed (6-15 seconds) increases in arteriolar diameter (5.8 +/- 0.7 microns). Administration of NG-monomethyl-L-arginine (200 microM), an inhibitor of the synthesis of endothelium-derived relaxing factor that blocked the arteriolar responses to acetylcholine (1 microM) but not to arachidonic acid (10 microM), did not affect the dilation (mean increase, 8.9 +/- 1.1 microns) due to increases in red blood cell velocity (13.4 +/- 1.5 mm/sec). However, the cyclooxygenase inhibitor indomethacin (or meclofenamate), which completely blocked the dilator response to arachidonic acid but did not change the response to acetylcholine, inhibited the arteriolar dilation (mean increase, 0.3 +/- 0.2 micron) due to increases in red blood cell velocity (9.3 +/- 1.0 mm/sec). Inhibition of prostaglandin synthesis also reduced the increase in calculated blood flow by 57% during occlusion. These results suggest that the arterioles are sensitive to increases in blood flow velocity (wall shear stress), in response to which they release prostaglandins, eliciting vasodilation. The existence of this phenomenon in the skeletal muscle microcirculation suggests a new regulatory mechanism that, by modulation of vascular resistance in the microvascular network, has the role of normalizing wall shear stress and providing for substantial increases in tissue blood flow.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference27 articles.

1. Flow velocity dependent regulation of microvascular resistance in vivo;Koller A;Microcirc Endothelium Lymphatics,1989

2. Endothelium regulates skeletal muscle microcirculation by a blood flow velocity sensing mechanism;Koller A;Am J Physiol,1990

3. Flow induced release of endothelium derived relaxing factor;Rubanyi GM;Am J Physiol,1986

4. Methylene blue and ETYA block flow-dependent dilation in canine femoral artery;Kaiser L;Am J Physiol,1986

5. Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3