Renal vascular adjustments to partial renal venous obstruction in dog kidney.

Author:

Abildgaard U,Amtorp O,Agerskov K,Sjøntoft E,Christensen N J,Henriksen O

Abstract

Blood flow studies were conducted in neurolept anesthetized dogs to characterize the involvement of renal nerves in ipsilateral renal vasoconstriction seen during acute elevation of renal venous pressure above 30 mm Hg. Renal blood flow was measured electromagnetically. The vasoconstrictor response was almost abolished by acute surgical denervation of the kidney, since renal vascular conductance remained unchanged during renal venous pressure elevation from 30-60 mm Hg. However, following additional alpha-adrenoceptor blockade or chronic renal denervation, renal vascular conductance increased progressively during renal venous pressure elevation to 60 mm Hg. The effect of acute decapsulation of kidney was studied in another group of dogs. Decapsulation induced a vasoconstriction. The decrease in renal vascular conductance observed during renal venous pressure elevation was unaffected by acute surgical denervation of decapsulated kidney, but was almost abolished following additional alpha-adrenoceptor blockade or chronic denervation. In decapsulated chronically denervated kidney, the increase in renal vascular conductance during renal venous pressure elevation to 60 mm Hg was still present but considerably attenuated as compared with the chronically denervated kidney with intact capsule. The renin-angiotensin system did not participate in acute vascular adjustments to renal venous stasis in intact kidney or in decapsulated acutely surgically denervated kidney. The data favor the view that neurogenic and myogenic mechanisms significantly influence the vasoconstrictor response to renal venous pressure elevation in dog kidney. The neurogenic contribution to the vasoconstrictor response comprises intrarenal and extrarenal vasoconstrictor mechanisms evoked reflexively by renal venous pressure elevation, and the myogenic contribution to the vasoconstrictor response comprises opposing vasodilator mechanisms due to increase in renal interstitial tissue pressure during renal venous pressure elevation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference35 articles.

1. Effect of elevation of intraluminal pressure on renal vascular resistance;Haddy FJ;Am J Physiol,1956

2. Effect of Change in Renal Venous Pressure Upon Renal Vascular Resistance, Urine and Lymph Flow Rates

3. Glomerular ultrafiltration dynamics during increased renal venous pressure;Dilley RJ;Am J Physiol,1983

4. Instantaneous renal arterial pressure-flow relations in anaesthetized dogs;Ehrlich W;Am J Physiol,1984

5. Sympathetic reflex-induced vasoconstriction during renal venous stasis elicited from the capsule in the dog kidney

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3