Spontaneous sarcoplasmic reticulum calcium release in rat and rabbit cardiac muscle: relation to transient and rested-state twitch tension.

Author:

Kort A A1,Lakatta E G1

Affiliation:

1. Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224.

Abstract

Scattered light intensity fluctuations (SLIF) (which monitor spontaneous Ca2+ release from the sarcoplasmic reticulum [SR]) and resting and twitch tension were measured during intervals after stimulation in rat and rabbit papillary muscles. For 1 to 5 seconds after stimulation of rat muscle bathed in 1.5 mM [Ca2+] (Cao), twitch and resting tension are depressed and SLIF are transiently abolished. SLIF and resting tension then recover simultaneously and monotonically but lag behind the restitution of twitch tension. In the absence of further stimulation, SLIF persist and the rested state twitch amplitude remains potentiated. When Cao is increased above 2.5 mM, the restitution of all parameters following stimulation is accelerated and becomes oscillatory; the lag of SLIF and resting tension restitution behind that of the twitch increases such that twitch amplitude increases, overshoots, and decreases to a nadir as SLIF and resting tension reach their initial maximum. In a given muscle, the maximum twitch amplitude occurs at approximately the same level of SLIF; when this level is exceeded, either transiently during monotonic or oscillatory recovery after stimulation in a given Cao or in the steady rested state by an increase in Cao, twitch tension decreases. Ryanodine (1 microM), caffeine (10 mM), or replacement of Cao with strontium abolishes SLIF and causes twitch amplitude to decay with rest. In contrast to rat, twitch amplitude in rabbit muscle bathed in physiological Cao decays with rest and SLIF are nonmeasurable at any interval following stimulation. When Cao is increased to 20 mM during rest, SLIF occur and the rest decay of the twitch is abolished. We interpret the parallel behavior of SLIF and rest potentiation to indicate that in the presence of SLIF, the average SR Ca2+ load within the tissue is high. Depolarization of a tissue exhibiting SLIF causes a large twitch but also a transient depletion of the average SR Ca2+ load. That the restitution of SLIF lags behind recovery of twitch amplitude suggests that the onset of spontaneous SR Ca2+ release requires a delay following SR Ca2+ replenishment. The simultaneous occurrence of spontaneous Ca2+ release in a sufficient number of cells places an upper limit on twitch amplitude either during recovery following stimulation or at rest.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3