Catheter-mediated electrical ablation: the relation between current and pulse width on voltage breakdown and shock-wave generation.

Author:

Bardy G H1,Coltorti F1,Stewart R B1,Greene H L1,Ivey T D1

Affiliation:

1. Department of Medicine, University of Washington, Seattle.

Abstract

Voltage waveform breakdown is characteristic of barotraumatic shock-wave generation during electrical catheter ablation of cardiac arrhythmias. The purpose of this investigation was to avoid barotrauma by defining, in vitro, the limits of pulse amplitude and pulse width for rectangular constant-current pulses that do not result in voltage breakdown and subsequently to determine what pulsing frequency is safe for use when high-energy trains of pulses are used. Electric pulses were delivered with a variable waveform modulator with a wide dynamic range and bandwidth capable of delivering pulses of 30-10,000-mu sec duration with amplitudes of up to 25 A. Cathodal pulses were delivered to a 6F catheter immersed in fresh anticoagulated bovine blood warmed to 37 degrees C to stimulate the milieu of a catheter in the chambers of the human heart. The maximum pulse amplitude that could be delivered without incurring voltage waveform breakdown varied inversely with pulse duration. Pulses of 30 mu sec broke down at currents above 24 A (2,500 V). Pulses of 10,000-mu sec duration broke down at 1 A (250 V). The maximum safely delivered energy for a single pulse was 2.5 J for pulses of 80-120 mu sec. Peak power for single pulses was maximum at 50-55 kW with 30-50-mu sec pulses. Charge delivery for single pulses was maximized at 9 mC with long, 10,000-mu sec duration pulses. To deliver an electrical pulse with energy significantly greater than 2.5 J without incurring voltage breakdown, trains of pulses were delivered where each pulse in the train had previously been shown to be free of voltage breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3