Unidirectional block and reentry of cardiac excitation: a model study.

Author:

Quan W1,Rudy Y1

Affiliation:

1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.

Abstract

A computer model of a ring-shaped, one-dimensional cardiac fiber was used for examination of responses of propagation to premature stimuli applied under different degrees of both cell-to-cell coupling and membrane excitability. Results demonstrated the importance of cellular uncoupling in the genesis of unidirectional block and reentry. Propagation of excitation itself created a certain degree of functional inhomogeneity that provided necessary conditions for unidirectional block and reentry. The likelihood of induction of unidirectional block was proportional to the degree of cellular uncoupling. In contrast, uniform reduction in sodium channel conductance decreased the inducibility of unidirectional block. Nonsustained and sustained reentry was induced by a properly timed single premature stimulus during the refractory period of a propagating action potential. Reduction of the size of the reentry pathway resulted in an increased degree of interaction between the wavefront and its tail, which, in turn, changed the kinetics of the slow ionic channels, bringing about shortening of action potential duration. Alternans in action potential duration were also demonstrated during circus movement and were caused by the alternating kinetic properties of the slow ionic currents. Inhomogeneity along the reentry pathway in refractory period, in membrane excitability, in fiber cross-sectional area, or in gap junction resistance also provided conditions necessary for unidirectional block. The simulations suggested that an important role was played by cellular uncoupling in the genesis and maintenance of unidirectional block and reentry.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference41 articles.

1. Janse MJ: Reentry rhythms in Fozzard HA Harber E Jennings RB Katz AM Morgan HE (eds): The Heart and Cardiovascular System. New York Raven Press Publishers 1986 pp 1203-1208

2. Computer simulation of arrhythmias in a network of coupled excitable elements.

3. Rudy Y Quan W: The effects of the discrete cellular structure on propagation of excitation in cardiac tissue: A model study in Sperelakis N Cole W (eds): Cell Interaction and Gap Junctions. Boca Raton Florida CRC Press 1989 vol II pp 123-141

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3