Rabbit ear model of injury-induced arterial smooth muscle cell proliferation. Kinetics, reproducibility, and implications.

Author:

Banai S1,Shou M1,Correa R1,Jaklitsch M T1,Douek P C1,Bonner R F1,Epstein S E1,Unger E F1

Affiliation:

1. Laboratory of Experimental Physiology and Pharmacology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md 20892.

Abstract

Recently, considerable interest has focused on the vascular smooth muscle cell (SMC) response to injury, particularly as it relates to restenosis after angioplasty. In an effort to find an optimal experimental model of arterial SMC proliferation after injury, we examined the effects of external injury to the central artery of the rabbit ear and assessed the reproducibility, morphological changes, and time course of cellular proliferation after such an injury. With rabbits under general anesthesia, direct pressure was applied at two sites along the central artery of the ears of 19 New Zealand White rabbits. Rabbits were maintained on a diet of 2.4% fat and 0.001% cholesterol throughout the experiment. In seven rabbits examined after 21 days, marked SMC proliferation with neointimal formation was observed at all 28 sites (100%). Mean neointimal area, expressed as a percentage of the area of the tunica media, was 82 +/- 40% (range, 21-203%). Compared with the uninvolved artery displaced 2 mm from the injury site, mechanical crush caused a 38% increase in total vessel area (p less than 0.001), a 40% decrease in luminal area (p less than 0.002), and no change in the area of the media. Serial histological studies were performed 1-42 days after injury, using light and electron microscopy and bromodeoxyuridine immunohistochemistry. Beginning at day 3, activated medial SMCs were noted to migrate through defects in the internal elastic membrane, with a gradual increase in neointimal area between days 5 and 12. Peak DNA synthesis was identified in the media 5 days after injury, with proliferative activity shifting almost exclusively to the neointima thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3